
Solid Earth, 5, 741–755, 2014
www.solid-earth.net/5/741/2014/
doi:10.5194/se-5-741-2014
© Author(s) 2014. CC Attribution 3.0 License.

Plate tectonic raster reconstruction in GPlates
J. Cannon1, E. Lau1,*, and R. D. Müller1

1EarthByte Group, School of Geosciences, University of Sydney, Australia
* now at: Google, Sydney, Australia

Correspondence to:J. Cannon (john.cannon@sydney.edu.au)

Received: 18 February 2014 – Published in Solid Earth Discuss.: 12 March 2014
Revised: 13 June 2014 – Accepted: 17 June 2014 – Published: 1 August 2014

Abstract. We describe a novel method implemented in the
GPlates plate tectonic reconstruction software to interac-
tively reconstruct arbitrarily high-resolution raster data to
past geological times using a rotation model. The approach
is based on the projection of geo-referenced raster data into a
cube map followed by a reverse projection onto rotated tec-
tonic plates on the surface of the globe. This decouples the
rendering of a geo-referenced raster from its reconstruction,
providing a number of benefits including a simple implemen-
tation and the ability to combine rasters with different geo-
referencing or inbuilt raster projections. The cube map pro-
jection is accelerated by graphics hardware in a wide variety
of computer systems manufactured over the last decade. Fur-
thermore, by integrating a multi-resolution tile partitioning
into the cube map we can provide on-demand tile streaming,
level-of-detail rendering and hierarchical visibility culling,
enabling researchers to visually explore essentially unlim-
ited resolution geophysical raster data attached to tectonic
plates and reconstructed through geological time. This capa-
bility forms the basis for interactively building and improv-
ing plate reconstructions in an iterative fashion, particularly
for tectonically complex regions.

1 Introduction

Geospatial information system (GIS) software enables geo-
scientists to visually explore vector and raster geospatial
data. In the plate tectonics domain there is also the need
to explore data in their spatial arrangement through geo-
logical time. GPlates (Boyden et al., 2011) is open-source
software that combines familiar GIS functionality with the
time dimension enabling visual and analytical exploration
of spatio-temporal relationships within geospatial data. Typ-

ical geospatial data consists of present-day observations on
tectonic plates. Due to the movement of plates throughout
geological history this data must bereconstructedfrom its
present-day configuration to its spatial arrangement at past
geological times before spatio-temporal exploration can oc-
cur. This is achieved by attaching present-day vector geom-
etry and raster data to tectonic plates on the surface of the
globe and rotating them to past geological configurations us-
ing a plate tectonic rotation model. The rotation model pro-
vides rotations for each tectonic plate over a period of ge-
ological history. Each rotation, consisting of an axis pass-
ing through the globe centre and an angle, rigidly rotates a
tectonic plate across the spherical surface of the globe. The
need for interactive raster reconstruction includes the ability
to quickly reconstruct high-resolution geophysical raster data
within alternative plate tectonic rotation models in order to
build, alter and optimize, or simply visualize and interrogate
those models (Williams et al., 2012). Part of this involves
visualizing how well ancient geological features align at re-
construction times when they were in close proximity to each
other. Here we focus on the implementation of raster recon-
struction within GPlates. Reconstructing raster data involves
correctly positioning a raster on the globe (geo-referencing),
partitioning it into tectonic regions and independently rotat-
ing each tectonic region according to its motion through geo-
logical time. Interactive exploration of raster data, at the fixed
resolution of the computer monitor screen, requires the user
to pan and zoom the view in order to expose desired raster
regions and details. Since the imported raster data can have
arbitrarily high resolution we must employ visibility culling
and level-of-detail (LOD) techniques. These enable the raster
to be efficiently rendered at the highest detail level permitted
by the monitor resolution and the user’s zoom level. Firstly,
LOD reduces the workload by down-sampling the original

Published by Copernicus Publications on behalf of the European Geosciences Union.

742 J. Cannon et al.: Plate tectonic raster reconstruction in GPlates

raster image into successively less-detailed images and only
loading and rendering raster data at a level of detail suffi-
cient to satisfy the pixel resolution of the computer moni-
tor. And secondly, visibility culling reduces the workload by
spatially partitioning each LOD image into tiles. Only those
tiles that are visible for a given view position and direction
are then loaded and rendered. However, we also need to inte-
grate LOD and visibility culling with interactive reconstruc-
tion of raster data (attached to independently rotating tectonic
blocks). Our approach is based on a cube map projection of
the globe whereby raster pixels are radially projected from
the surface of the globe onto a cube surrounding the globe
and where each face of the cube is partitioned into a LOD
hierarchy of image tiles. With the cube map approach the
rendering of a reconstructed raster follows a decoupled two-
stage process. Both stages take advantage of the ability of
graphics hardware to rapidly project and render a 3-D scene
into a frame buffer (or target texture). The first stage renders
the geo-referenced raster into one or more tile textures of the
cube map. The second stage involves unprojecting those cube
map tile textures back onto the globe during the rendering
of rotated tectonic surface regions. This separation of ren-
dering stages simplifies the implementation of raster recon-
struction on the 3-D globe while also enabling enhancements
such as raster reconstruction in different 2-D map projections
and combining multiple rasters. Virtually all graphics hard-
ware manufactured in the last decade has dedicated hardware
to accelerate transformations using 4× 4 matrices. The cube
map approach takes advantage of this since each individual
cube map tile has its own cube map projection transform rep-
resented as an off-axis perspective 4× 4 matrix. This enables
GPlates to reconstruct and display arbitrary resolution raster
data at interactive frame rates on a wide variety of computer
systems.

2 Multi-resolution raster visualization

GPlates initially uses a multi-resolution raster rendering ap-
proach when data are loaded into GPlates, i.e. when the user
has chosen not or not yet to reconstruct a raster. Addition-
ally, when the user does choose to reconstruct a raster, this
approach is used as the first stage of the raster reconstruction
process (to render that raster into a cube map).

2.1 Source raster data

In order to display raster data in GPlates a raster file needs
to be imported. The import procedure generates a GPlates
Markup Language (GPML) file with a single raster fea-
ture containing a link to the original raster image file and
raster meta-information including geo-referencing, coordi-
nate reference system and general raster metadata (Qin et
al., 2012). GPlates uses the Geospatial Data Abstraction Li-
brary (GDAL), an open-source library for raster geospatial

data formats (Warmerdam, 2008), for importing raster data.
Source raster data from a variety of colour image formats
containing Red Green Blue Alpha (RGBA) colour data (in-
cluding JPEG and PNG) can be imported into GPlates. Also,
a variety of numerical image formats containing floating-
point or integer data (including NetCDF and GeoTIFF) can
be imported. Both types of raster data can be visualized in
RGBA format – for numerical raster data (which has no
colour information) the user also selects a colour palette to
translate from numerical pixels to RGBA pixels.

2.2 Rationale for multi-resolution raster data

GPlates takes advantage of the power of graphics hardware to
achieve raster rendering at interactive frame rates. However,
the raster data still needs to be retrieved from storage before it
can be rendered. Since this is usually a hard disk drive (HDD)
with mechanical disk platters this is by far the slowest com-
ponent in raster visualization. More recently solid state drives
(SSD) are becoming less expensive and their random access
reads have much lower latencies than in HDDs. However,
HDD and SSD bandwidths are still comparable so loading
the entire raster into system memory is not desirable since
this can consume an excessive amount of time and computer
memory. Especially since GPlates supports arbitrarily high
raster image resolutions (such as one minute global grids and
higher) which can exceed the maximum of 3–4 GB of virtual
memory addressable by a 32 bit application (even if the sys-
tem has much more physical memory).

Therefore, it is important to only interactively load raster
data that is both (i) at a resolution closely matching that of
the desktop monitor (or visual display screen), and (ii) that is
visible in the view window. This level of detail and visibility
culling is achieved with a multi-resolution tiled raster image
pyramid that significantly reduces the amount of raster data
streamed from disk and reduces the rendering workload for
the graphics hardware.

2.3 Multi-resolution tiled raster image pyramid

The raster image pyramid is generated by successively filter-
ing the full resolution raster image into progressively smaller
versions of itself with each pyramid level halving the di-
mension of the previous level (for example 4000× 2000,
2000× 1000, 1000× 500, etc.). Since this filtering is gen-
erally expensive it is only done once and written to a cache
file (when the raster is first rendered) such that subsequent
sessions use the cache file directly. It should be noted that
this cache file resides on disk and not in memory.

During raster rendering GPlates selects the lowest resolu-
tion image that achieves a sharp and crisp visual appearance
of the raster (of course, when even the highest-detail reso-
lution of the raster is insufficient, the raster cannot appear
sharp and crisp). For example, if the entire raster is visible in
the view window (when the view is fully zoomed out) and the

Solid Earth, 5, 741–755, 2014 www.solid-earth.net/5/741/2014/

J. Cannon et al.: Plate tectonic raster reconstruction in GPlates 743

Figure 1. Visible geo-referenced tiles of the ETOPO1 (1 Arc-Minute Global Relief Model) raster (Amante and Eakins, 2009) highlighted
with solid colours. The left and right sides show two different zoom levels. The yellow wireframe is the orthographic-(rectangular prism)
view frustum used by the “3-D Orthographic” view in GPlates. Note that(A–B) on left side show the same zoomed-out view (yellow frustum)
but from different angles – similarly for(A–B) on the right with the zoomed-in view.(A) more clearly shows that the yellow frustum contains
only the front surface of the globe, rejecting the rear surface;(B) more clearly shows which geo-referenced tiles overlap the view frustum
(yellow frustum) – note that tiles outside the frustum are culled;(C) The view as seen by the user of GPlates (the region inside the yellow
frustum).

full-resolution raster (level 0) has dimensions 21600×10800
(a 1 min global grid) and the display screen has dimensions
1650× 1050, then the down-sampled image at level 3 in the
pyramid (of dimensions 2700×1350) is sufficient to display
the raster without visual loss of detail.

In the above example the view was fully zoomed out to
display the entire globe (or raster) requiring only a low-
resolution raster pyramid level to be loaded and rendered.
The opposite scenario occurs when the view is fully zoomed
in to observe, in detail, a specific localized geographic re-
gion. Here a much higher raster level of detail is required
but a correspondingly smaller area of the globe (or raster) is
visible in the view window – essentially the majority of the
raster is not actually visible. To enable visibility culling, each
image in the pyramid is partitioned into small fixed-size tiles
and only the visible tiles are loaded and rendered. Note that
all tiles contain the same number of pixels regardless of their

pyramid level and hence place the same load on the system
(graphics hardware and streaming).

Interactive visualization is then possible because the total
number of tiles loaded and rendered at any time is essentially
bounded regardless of the zoom level. Figure 1 shows the
visible tiles of a raster as solid colours to highlight the tile
partitioning. The left side of the figure (showing the more
zoomed-out view) exposes a larger area of the raster but
conversely it can use tiles from a lower-resolution image in
the pyramid. The right side of the figure (showing the more
zoomed-in view) exposes a smaller area of the raster but con-
versely it needs tiles from a higher-resolution image in the
pyramid. As can be seen in Fig. 1c this results in both zoom
levels requiring roughly the same number of tiles and hence
placing roughly the same load on the graphics hardware and
streaming subsystems. The yellow wireframe in the figure is
the view frustum used by the “3-D Orthographic” view in
GPlates. A frustum, as typically used in computer graphics

www.solid-earth.net/5/741/2014/ Solid Earth, 5, 741–755, 2014

744 J. Cannon et al.: Plate tectonic raster reconstruction in GPlates

for a perspective projection, is the solid portion of a trun-
cated pyramid whose top has been cut off by a plane parallel
to its base (Neider et al., 1997) and where the pyramid apex
represents the eye, or camera, location (the single point re-
ceiving the converging light rays). However, the frustum in
an orthographic view is a rectangular prism (the light rays
are parallel, instead of converging, and hence the eye/camera
location is essentially at infinity). The yellow orthographic-
view frustum in Fig. 1 does not include the rear hemisphere
of the globe because raster data on the rear hemisphere are
not normally visible through the globe (note that the globe
is normally opaque grey in GPlates but is rendered semi-
transparent in the figure in order to highlight the yellow wire-
frame frustum within the interior of the globe).

2.4 Streaming raster data

As the user pans the view across the globe, new raster tiles
come into view while old tiles drop from view. And as the
user zooms the view into the globe, each visible tile is recur-
sively replaced with four higher resolution tiles to enhance
the detail and vice versa when zooming the view away from
the globe. This continual acquiring and releasing of tiles ne-
cessitates the streaming of raster data from disk as the user
interactively explores raster data sets.

GPlates uses the open-source, cross-platform graphics li-
brary OpenGL to access hardware-accelerated graphics func-
tionality. For a raster tile to be rendered by the graphics
processing unit (GPU), its data must first be loaded into an
OpenGL texture resource. The tile texture dimension is fixed
at 256× 256 pixels since all graphics hardware supports this
texture dimension and it provides a reasonable granularity
for visibility culling. GPlates maintains a cache of texture
resources in memory for each raster that includes the cur-
rently visible tiles plus the most recently released (not vis-
ible) tiles. When a new tile becomes visible GPlates first
searches the texture cache. If the tile is not cached then the
tile data is loaded from disk (the multi-resolution tiled im-
age pyramid cache file) into the least recently released tex-
ture resource. The texture cache and the Operating System’s
physical-memory-backed file cache help to minimize the im-
pact of high-latency disk accesses. For example, panning the
view over a new area of a raster can initially result in some
stuttering but when the user later returns to the same area the
panning tends to be much smoother.

To further mitigate the cost of high-latency disk accesses,
the raster tiles are not stored on disk as rows of tiles across
the raster (storing the entire first row followed by the second,
third, etc). Instead the tiles are arranged on disk in a Hilbert
space-filling curve (Sagan, 1994) in order to minimize the
file seek distance between spatially adjacent tiles. This is not
very noticeable for low-resolution rasters, but becomes in-
creasingly important for higher-resolution rasters. With the
advent of low-latency SSDs this is not nearly as important as
it is for the relatively high-latency HDDs.

Figure 2. A regional (non-global) raster overlaid with colour-coded
wireframe geo-reference tile meshes at two different tile resolutions
(zoom levels). There are more tiles in(B) than in(A), covering the
same geographic region, because the next-higher resolution of the
image pyramid (four times the pixels) is required for the zoomed-in
view (B) compared to the zoomed-out view(A).

2.5 Geo-referencing raster data

The pixels in a raster tile are positioned on the globe (geo-
referenced) using either an affine transform or a sequence
of ground control points. The geo-referenced coordinates are
specified in the raster’s coordinate reference system, which
can include a map projection (such as Lambert Conic Con-
formal). The GDAL library (Warmerdam, 2008) is used to
convert geo-referenced coordinates to the default coordinate
reference system World Geodetic System 1984 (WGS 84)
(Kumar, 1988) in GPlates.

GPlates uses OpenGL to render a raster tile by first cre-
ating a regular surface mesh containing geo-referenced ver-
tices and attaching the tile’s texture. Each vertex in the mesh
contains a 3-D position on the globe and a 2-D texture coor-
dinate (location in the tile texture). Since the geo-referencing
cannot be calculated at each raster pixel it is only accurate
at mesh vertices. To help minimize this visual deviation be-
tween vertices, adjacent vertices are separated by no more
than 16 pixels. Therefore one raster tile (256× 256 pixels)
is represented by a mesh of 17× 17 vertices (including tile

Solid Earth, 5, 741–755, 2014 www.solid-earth.net/5/741/2014/

J. Cannon et al.: Plate tectonic raster reconstruction in GPlates 745

boundary vertices). Figure 2 illustrates how the mesh spac-
ing adapts to the level in the raster image pyramid such that
the number of raster pixels between adjacent mesh vertices
is roughly the same (in Fig. 2a and b).

2.6 Rendering raster data

Rendering a raster involves first determining the resolution
level in the multi-resolution image pyramid and then finding
the visible geo-referenced tiles in that level. To determine
tile visibility, each tile is bounded by an oriented bounding
box (OBB) that is tested for intersection with the view frus-
tum. An OBB is a rectangular 3-D bounding box at an ar-
bitrary orientation. To improve culling efficiency all tiles in
each resolution level are arranged in an OBB binary tree so
that, during rendering, hierarchical visibility culling can be
employed to cull an entire group of tiles with a single OBB-
frustum test. The visible raster tiles are then rendered into the
view window or, if the raster is reconstructed, into the cube
map.

2.7 Time-dependent rasters

A raster consists of a single raster image typically represent-
ing geospatial data observations on the Earth’s present-day
surface. GPlates can also create a time-dependent raster by
importing a time sequence of raster image files and assign-
ing geological ages to each image. GPlates renders a time-
dependent raster by selecting the image, in its time sequence,
whose age most closely matches the current geological time.
Note that it is also possible to reconstruct a time-dependent
raster. In this case, both the image and spatial location of the
time-dependent raster vary with geological time. Raster re-
construction is covered in the next section.

3 Multi-resolution raster reconstruction

The rendering framework described so far can render an un-
reconstructed raster either directly to the computer screen
when the user has chosen not to reconstruct a raster or as
the first stage of the raster reconstruction process when the
user does choose to reconstruct a raster.

This section describes our approach to visualization of
a reconstructed present-day (or time-dependent) raster by
building a multi-resolution cube map framework on top of
the raster rendering framework described so far.

Our raster reconstruction process involves a multi-
resolution cube map, a set of tectonic polygons and a rotation
model. By imprinting the raster data into the overlapping tec-
tonic polygons and then independently rotating the polygons
across the globe, using the rotation model, we are essentially
reconstructing present-day raster data to its past geological
configuration. First we introduce the concept of a cube map
as an efficient way to capture raster data in a representation
that is decoupled from the raster’s geo-referencing and in-

built raster projection. We then extend the cube map with
multi-resolution tiles to support level of detail and visibility
culling necessary for efficient rendering. We show that any
tile, in the cube map, can be generated by rendering the geo-
referenced raster using the method described in Sect. 2. With
the generation of a multi-resolution cube map covered, we
finally describe in detail how raster data are imprinted onto
tectonic polygons and rotated with them across the globe.
The multi-resolution cube map facilitates this by enabling the
raster imprinting of pre-rendered cube map tiles onto tectonic
polygons to be accelerated by common graphics hardware.

3.1 Cube map properties

The cube map was first proposed by Ned Greene (Greene,
1986) as an alternative method of capturing the full projec-
tion of the world or environment from a particular world
location. This is useful for applications such as reflection
mapping because the cube map can be efficiently generated
and indexed using common graphics hardware (compared to
spherical and paraboloid mappings). An environment cube
map is created by placing the cube centre at a particular
world location and then projecting the environment onto the
six faces of the cube. This is achieved by separately ren-
dering the six views into six square textures each using a
90◦ field-of-view perspective frustum. The environment cube
map then consists of these six textures arranged as a single
hardware cube map texture (since the GeForce256 GPU was
introduced in 1999) whereby a 3-D direction vector can be
used to look up the cube map texture. For example, in the re-
flection mapping scenario the 3-D look-up vector is a surface
reflection vector calculated at each point on the reflecting ob-
ject’s surface such that when the entire surface is rendered it
will appear to reflect the environment.

For GPlates the cube centre is always positioned at the
centre of the globe and the environment captured by the cube
map is the raster data as it appears on the surface of the globe.
Essentially we’re looking from the centre of the globe at the
inside of the globe as if the interior of the globe was empty
and the raster was painted on the inside surface of the globe.
The view direction of each of the six view frustums is aligned
with a coordinate system axis (+x, −x, +y, −y, +z, −z). Fig-
ure 3 shows a global raster captured in an environment cube
map.

Once the raster cube map is captured it can then be ac-
cessed using a 3-D vector to look up a raster pixel. The 3-D
look-up vector is simply the direction from the centre of the
globe to a point on the surface of the globe. For a unit sphere
centred at the coordinate system origin this is the same as the
3-D position on the surface of the globe. The raster pixel re-
trieved from the cube map is the value of the geo-referenced
raster at the specified surface position on the globe.

A cube map has a higher sampling density near the face
corners compared with the face centres resulting in a non-
uniform sampling of the cube map pixels across the surface

www.solid-earth.net/5/741/2014/ Solid Earth, 5, 741–755, 2014

746 J. Cannon et al.: Plate tectonic raster reconstruction in GPlates

Figure 3. A global free-air gravity raster (Andersen et al., 2010)
highlighted with solid colours representing the faces of a cube.
Each cube face and the globe centre represent a perspective (pyra-
mid) frustum. The yellow wireframe represents the cube and the
green wireframe represents the edges of the six pyramid frusta.(A)
Coloured raster regions captured by the pyramid frusta of the cube
faces;(B) coloured raster regions radially projected onto the cube
faces (from the globe centre).

of the globe. However, the non-uniformity is much less than
the common rectangular (latitude–longitude) projection and
avoids the projection singularity at the North and South
Poles.

3.2 A multi-resolution cube map

Essentially a cube map raster and a geo-referenced raster are
different representations of the same raster data. So, as with
the geo-referenced raster, the cube map raster is extended
to include multi-resolution capabilities. That is, to enable
matching the cube map raster resolution to the display (or
render target) resolution and to enable visibility culling by
partitioning each face of the cube into tiles.

A multi-resolution cube map hierarchically partitions each
face of a cube into tiles using a quadtree data structure
(Finkel and Bentley, 1974) whereby the 2-D surface of each
cube face is divided into four quadrants and each quadrant
further divided into four sub-quadrants and so on. Each node
in the quadtree represents a fixed-dimension tile. Each level,
or depth, in the quadtree represents a different resolution of
the cube map raster since each level contains, relative to its
parent level, four times the number of tiles (and hence four
times the pixels). For example if the tile dimension is 256
then quadtree level 0 is one tile (or 256× 256 pixels), level
1 is 2× 2 tiles (or 512× 512 pixels), level 2 is 4× 4 tiles (or
1024× 1024 pixels), etc. Figure 4 shows the association be-
tween the quadtree data structure, the hierarchy of tile images
and the tile frustums within a single cube face. Also note that
there are six quadtrees in total since each cube face has its
own quad tree.

3.3 Generating a cube map raster

A cube map raster is generated by rendering a geo-referenced
raster into it. This uses the same rendering procedure that was
used to render a geo-referenced raster into the view window,

as described in Sect. 2, with the exception that the view frus-
tum and target frame buffer differ for the cube map. Each
tile in a multi-resolution cube map has its own view frustum
and target texture resource. A cube map tile texture is gener-
ated by rendering only those geo-referenced tiles that are vis-
ible in its view frustum. During rendering, the geo-referenced
tile vertices are transformed by the 4× 4 off-axis perspective
(pyramid) projection transformation (Neider et al., 1997) de-
fined by the frustum of that cube map tile. Figure 5 shows
the geo-referenced tiles, as solid colours, visible in the view
frustum of a single cube map tile.

A cube map raster contains all such cube map tiles whose
frusta intersect the geo-referenced raster (for a global raster,
this includes all cube map tiles). Figure 6 shows these cube
map tiles for a regional geo-referenced raster at three differ-
ent resolution levels. Only those cube map tiles that actu-
ally cover the raster’s region are required. Note that the solid
colours in Fig. 6 highlight the cube map tiles as opposed to
Fig. 5 which highlights the geo-referenced tiles (for a single
cube map tile).

For graphics hardware supporting non-power-of-two tex-
ture dimensions the tile dimension of the cube map is opti-
mally adapted for each geo-referenced raster in order to min-
imize texture memory usage.

3.4 Rendering reconstructed raster data

Raster data are reconstructed by combining a raster cube
map, a tectonic polygon data set and a rotation model. A tec-
tonic polygon represents the boundary of a tectonic plate –
a region of the Earth’s crust that is typically rigid through-
out geological time. The rotation model determines the mo-
tion of each tectonic plate across the globe over geological
time. Each tectonic polygon is linked to the rotation model
using a tectonic plate ID which provides access to a time se-
quence of finite Euler rotations (Boyden et al., 2011; Greiner,
1999) that rotate the tectonic plate from its present-day po-
sition to its position at a time in the geological past relative
to another tectonic plate (with a different plate ID). These
plate-relative rotations are then accumulated by traversing
the plate circuit from the tectonic plate back to the global
reference frame to obtain the absolute rotation of the tec-
tonic plate (Cox and Hart, 1986). Any geospatial data, in-
cluding rasters, attached to a tectonic plate will inherit that
plate’s motion over geological time. Vector geometry such
as points, polylines and polygons can be reconstructed once
they are partitioned into tectonic plates (and assigned asso-
ciated plate IDs). Raster data is conceptually reconstructed
in a similar manner whereby raster pixels are attached to (or
partitioned into) tectonic plates and then rotated using the
motion of the attached plates. In GPlates the user attaches
raster data to tectonic plates by connecting a polygon layer to
a raster layer. Although the tectonic plates can rotate across
the globe, their polygon shapes are static (no change over
time). While GPlates does support dynamic plate polygons

Solid Earth, 5, 741–755, 2014 www.solid-earth.net/5/741/2014/

J. Cannon et al.: Plate tectonic raster reconstruction in GPlates 747

Figure 4. Quadtree partitioning of a single cube face of the ETOPO1 global raster (Amante and Eakins, 2009). The yellow wireframe
represents the cube. The red wireframe represents the perspective (pyramid) frustum containing the highlighted raster tile – note that these
can be off-axis pyramids (inB, C, E andF). (A) The tile at level 0 of the quadtree covering the entire cube face.(B) The four tiles at quadtree
level 1 (cyan wireframe). These are the children of the tile in(A). (C) Four (out of sixteen) tiles at quadtree level 2 (blue wireframe). These
are the children of the tile rendered in(B). (D–F) Same as(A–C) except that the rendered tiles are radially projected onto the cube face to
show the actual tile textures (square 2-D images).

(Gurnis et al., 2012) to handle the changing shape of oceanic
plates over geological time, they are not currently used to re-
construct rasters. A future extension of GPlates functionality
will be designed to use dynamic plate polygons, along with
deforming plates, to reconstruct and deform rasters.

A raster is efficiently reconstructed by mapping the tile
textures of the raster cube map onto the tectonic plate poly-
gons and compositing the rotated polygon-tile intersections
into the scene. The level of detail selected for rendering is
the lowest resolution of the raster cube map that maintains a
crisp visual appearance of the reconstructed raster. Figure 7
shows the pseudocode for rendering a reconstructed raster.

The function render_reconstructed_raster iterates over the
six faces of the raster cube map and, for each tectonic poly-
gon, renders those cube map tiles (at the appropriate level
of detail) that overlap the polygon. Each face of the cube
map contains a quadtree hierarchy of tiles that, beginning
with the root tile of a face, is recursively visited using the
function render_raster_tile. Each level of recursion visits one
level deeper in the quadtree and expands the number of tiles
visited by up to four. If a visited tile is at the appropriate level
of the quadtree for rendering, then the tile is mapped onto the
polygon and then rotated and composited into the scene. Oth-

erwise the four child tiles at the next deeper level are visited
recursively. Tiles that do not overlap the polygon are culled,
and rotated tiles that are not visible are also culled.

Figure 8 shows the accumulated rendering of a single ro-
tated polygon mesh. The rendering level of detail is quadtree
level 1. At this detail level there are three tiles overlapping
the polygon. Those same three tiles are also shown in their
present-day locations in Fig. 6b.

This process is repeated for all tectonic polygons until the
reconstructed raster is fully composed into the scene. Figure
9 shows a raster reconstructed with two tectonic plates.

The following sections cover the most important details in
this process.

3.4.1 Generating tectonic polygon triangulation meshes

Each tectonic polygon is rendered as a spherical mesh that is
triangulated within the interior surface region of the polygon.
The Computational Geometry Algorithms Library (CGAL)
(Fabri and Pion, 2009) is used to generate a surface polygon
mesh of sufficient tessellation to give a spherical appearance
when rendering into the “3-D Orthographic” view in GPlates.
This is a time-consuming process and as such it only occurs

www.solid-earth.net/5/741/2014/ Solid Earth, 5, 741–755, 2014

748 J. Cannon et al.: Plate tectonic raster reconstruction in GPlates

Figure 5.Rendering geo-referenced tiles into a single cube map tile
of the ETOPO1 global raster (Amante and Eakins, 2009). The geo-
referenced tiles are highlighted with different colours. The yellow
wireframe represents the cube.(A) The red wireframe represents
the perspective, off-axis pyramid frustum of the single cube tile.
The pyramid apex is at the globe centre.(B) The subset of geo-
referenced tiles that overlap the frustum of the single cube tile – note
that tiles outside the frustum are culled.(C) The cube tile rendered
on the sphere. This is the intersection of the geo-referenced tiles
and the cube tile frustum.(D) The cube tile projected onto the cube
face to show the actual cube tile texture (square 2-D image) and the
contributions from the geo-referenced tiles.

when a raster layer is first connected to a polygon layer in
GPlates. Figure 8 (b, d, f) shows the wireframe of continen-
tal Australia. Since the cube map decouples geo-referenced
raster rendering (Sect. 2) from tectonic polygon rendering,
the same tectonic polygon mesh data set can be shared by all
raster layers attached to it.

3.4.2 Mapping a raster cube map onto polygon meshes

In the pseudocode in Fig. 7, each atomic rendering opera-
tion submitted to OpenGL consists of a rotated polygon mesh
rendered with a cube map tile texture. In most applications
a texture is usually mapped onto a mesh by assigning a 2-
D texture coordinate to each mesh vertex. An advantage of
the cube map approach is that the tectonic polygon meshes
can be rendered without requiring explicit texture coordi-
nates. Instead, the surface positions in the mesh vertices are
transformed into texture coordinates directly by the graph-
ics hardware during polygon mesh rendering. Automatic tex-
ture coordinate generation dates back to base OpenGL 1.1

and supports matrix transformation of vertex positions for
use as texture coordinates. GPlates uses this functionality to
project the 3-D position of each polygon mesh vertex into
the 2-D texture space of a cube map tile. This 4× 4 texture
matrix transformation is identical to the matrix used to ren-
der the geo-referenced raster into the cube map tile texture.
This has the same effect as unprojecting the pre-rendered
cube map tile texture back onto the globe during rendering
of the surface polygon mesh. Note that the graphics hard-
ware uses perspective-correct texture coordinate interpola-
tion when rasterizing pixels (of the polygon mesh) and hence
there is no texture projection deviation or mismatch between
generating a cube map tile texture (Sect. 3.3) and unproject-
ing it back onto the globe.

In addition to transforming the 3-D positions of mesh ver-
tices to generate 2-D texture coordinates, the 3-D positions
are transformed to generate the final rotated polygon mesh
positions on the surface of the globe using the Euler rotation
of the tectonic polygon. The combined effect of these two
transformations is to project a raster onto a polygon mesh
and then rotate it across the globe. Both 4× 4 transforma-
tions are accelerated by the graphics hardware.

3.4.3 Clipping polygon meshes to cube map tiles

Graphics hardware can apply a limited number of textures
when rendering a mesh (with older hardware supporting a
maximum of four textures). Each cube map tile is rendered
using up to four textures in some cases, including the source
tile texture itself, the clip texture (see below) and an optional
age grid mask and age grid coverage texture (age grids are
described in Sect. 4.3). So even though a single polygon
mesh can overlap multiple cube map tiles, it must be rendered
separately for each tile. In this case only the intersection of
a polygon mesh with each cube map tile can be rendered.
This is achieved by rendering the entire polygon mesh for
each cube map tile but only rasterizing pixels that map to a
tile’s interior. Pixels that map to a tile’s exterior are rejected
by modulating the tile’s texture with a clip texture and us-
ing the Alpha Test functionality of OpenGL 1.1 to discard
transparent pixels (alpha equal to zero). The clip texture is a
small 4× 4 pixel texture containing opaque inner pixels and
transparent outer pixels. The boundary around the inner 2× 2
pixels maps to the tile boundary such that polygon mesh re-
gions outside the tile become transparent. Figure 8 (b, d, f)
illustrates the clipping of a single rotated polygon mesh by
the three tiles that overlap it.

3.4.4 Intersections between cube map tiles and tectonic
polygons

The pseudocode in Fig. 7 includes a test for the intersec-
tion of a present-day (unrotated) tectonic polygon with an
unrotated cube map tile. These intersections are independent
of the geological time of reconstruction since they do not

Solid Earth, 5, 741–755, 2014 www.solid-earth.net/5/741/2014/

J. Cannon et al.: Plate tectonic raster reconstruction in GPlates 749

Figure 6. The cube map tiles (highlighted in different colours) of a regional raster at three different resolution levels. Since the raster is
regional, not all cube map tiles are required – only those that actually cover the raster’s region. This highlights the partial nature of quadtrees
of regional rasters.(A) Only three cube faces (and hence three quadtrees) are required to provide coverage of the regional raster at quadtree
level 0.(B) For each of the three cube face tiles in(A) only one of four possible child tiles (quadtree level 1) are required to cover the raster.
(C) The cube map tiles at quadtree level 2 (children of the tiles inB) that cover the raster.

 30

 render_reconstructed_raster(raster, tectonic polyg ons) 1
 for each face in raster cube map 2
 if raster covers cube face then 3
 for each polygon in tectonic polygons 4
 render_raster_tile(root tile of face, polygon) 5
 6
 render_raster_tile(tile, polygon) 7
 if polygon’s present-day geometry intersects ti le then 8
 if rotated tile bounding box is visible then 9
 if reached level-of-detail to render then 10
 render rotated polygon clipped to tile texture 11
 else 12
 for each child tile in current tile 13
 if raster covers child tile then 14
 render_raster_tile(child tile, polygon) 15

Figure 7. Pseudocode for the rendering traversal of a reconstructed multi-resolution cube map 16

raster. 17

 18

Figure 7. Pseudocode for the rendering traversal of a reconstructed
multi-resolution cube map raster.

involve rotations and hence their boolean results can be pre-
computed for all tile–polygon pairs. And since the tile par-
titioning spatial configuration is the same for all raster cube
maps, regardless of their individual geo-referencing, the in-
tersection results can be shared by all rasters that are attached
to the same tectonic polygon data set.

3.4.5 Visibility culling of cube map tiles

The pseudocode in Fig. 7 includes a test to determine if a
rotated tile is visible in the scene’s view frustum when ren-
dering a tectonic polygon. Each cube map tile is bounded by
an OBB in much the same way as geo-referenced tiles are
bounded (Sect. 2.6). Visibility culling involves rotating the
OBB of each cube map tile that overlaps a tectonic polygon
(using the Euler rotation of the tectonic polygon). A rotated
tile is then only rendered if its rotated OBB intersects the
scene’s view frustum. Figure 8 (a, c, e) shows the rotated
tile OBBs in red wireframe and the scene’s view frustum in
yellow wireframe. As with geo-referenced tiles the visibil-
ity culling is hierarchical since a single OBB-Frustum test
can cull an entire sub-tree of quadtree tiles. Also, it turns out
that, instead of rotating each tile OBB, it is actually more ef-
ficient to reverse-rotate the scene view frustum once (per tec-

tonic polygon) and hierarchically test against the unrotated
OBBs. A single polygon typically has multiple overlapping
tiles. Conversely a single tile can be covered by multiple (ad-
jacent) polygons.

3.4.6 Removing texture seams between cube map tiles

Cube map tile textures are rendered using hardware bilinear
filtering to reduce the texture sampling artifacts of nearest-
neighbour filtering. However, this introduces visible raster
seams or discontinuities across tile boundaries because the
filtered texture samples of two adjacent tiles do not match
along the shared tile boundary. To remove these seams each
cube map tile frustum is expanded by half a pixel such that
adjacent tile frusta overlap slightly. Note that this does not
introduce a half-pixel error because the geo-referenced raster
is also rendered into the adjusted frusta when generating the
cube map tiles.

Since GPlates adapts the raster cube map resolution to
the display (or render target), hardware texture mipmaps
(Williams, 1983) are not required to reduce frequency-
aliasing artifacts. This also avoids the problem of the half
pixel frusta overlap solution not always working with hard-
ware texture mipmaps (due to pixel size varying across
mipmap levels). However, hardware anisotropic texture fil-
tering is used to reduce aliasing in highly anisotropic regions
of the globe where the surface normal is almost perpendicu-
lar to the view direction (such as near the horizon).

4 Raster reconstruction enhancements

The rendering framework described so far can render a re-
constructed raster directly to the computer screen in the stan-
dard 3-D globe view. This section describes various enhance-
ments to raster reconstruction that build on the approach de-
scribed in Sect. 3.

Visualizing reconstructed rasters in the 2-D map projec-
tion views discusses how interactivity is maintained in the

www.solid-earth.net/5/741/2014/ Solid Earth, 5, 741–755, 2014

750 J. Cannon et al.: Plate tectonic raster reconstruction in GPlates

Figure 8. Accumulated tile rendering of single rotated polygon mesh (continental crust on the Australian plate) overlapping three cube map
raster tiles (at quadtree level 1). The rotation (illustrated by the white curved arrow) is from present day (0 Ma) to 140 Ma. The yellow
wireframe is the orthographic-(rectangular prism) view frustum used by the “3-D Orthographic” view in GPlates. The three tiles are also
shown in Fig. 6b in their present-day locations.(A, C, E) show the unrotated and rotated cube map tiles. Also shown are the rotated tile
OBBs in red wireframe. All three OBBs intersect the orthographic-view frustum and therefore are visible;(B, D, F) show the unrotated and
rotated polygon mesh, in white wireframe, clipped to each tile.

2-D map views. Instead of rendering the reconstructed raster
directly to the computer screen (as done in the 3-D globe
view), it is first rendered into an intermediate cube map
(called the reconstructed cube map) and then rendered di-
rectly to the computer screen via a map projection.

Improved raster reconstruction using age grids makes
use of a second raster, containing pixel values representing
the age of oceanic crust. Replacing the usual per-tectonic-
polygon age test with a per-pixel age test restores the missing
sections of reconstructed raster data near oceanic ridges.

Revealing raster detail with surface normal maps modu-
lates the colour of a raster with the surface lighting gener-

ated from a second raster. This enables patterns in the second
raster to be visually transposed onto the first raster.

And finally, analysing reconstructed numerical raster data
adds support for reconstructing floating-point raster data (in
contrast to colour raster data). This enables numerical raster
data to be analysed in the data-mining front-end of GPlates
and also enables export to numerical raster file formats.

4.1 Visualizing reconstructed rasters in 2-D map
projection views

The default view in GPlates is the 3-D Orthographic Globe
view that uses an orthographic-view projection commonly
used in computer-aided design (CAD) software where the

Solid Earth, 5, 741–755, 2014 www.solid-earth.net/5/741/2014/

J. Cannon et al.: Plate tectonic raster reconstruction in GPlates 751

lines of projection are parallel. GPlates also supports a va-
riety of 2-D map projection views including the rectangular,
Mercator, Mollweide and Robinson projections that unwrap
the globe onto a 2-D plane.

Rendering reconstructed raster data to a 2-D map view re-
quires an extra rendering phase above that required for the 3-
D globe view. Instead of rendering directly to the computer
screen (as done for the 3-D globe view) the reconstructed
raster is rendered into a reconstructed cube map which is,
in turn, rendered into the 2-D map view. This also serves to
demonstrate that a cube map can capture any surface repre-
sentation on the globe. The cube map in Sect. 3.3 captures
the unreconstructed, geo-referenced raster. Here the recon-
structed cube map captures the final reconstructed raster (the
output of Sect.3.4). The 3-D globe view does not need a
reconstructed cube map because the 3-D orthographic-view
projection and each tectonic polygon Euler rotation can be
combined into a single 4× 4 matrix that can be acceler-
ated by graphics hardware dating back to OpenGL 1.1. For
the 2-D map views the surface positions on the globe are
converted into 2-D map coordinates using the Proj4 library
(Evenden and Warmerdam, 1990) and this library cannot be
offloaded to the graphics hardware. Even if that were possi-
ble the graphics hardware would still need to clip the rotated
tectonic polygons across the 2-D map boundary and this is
not something that most graphics hardware can do. While
this could all be done on the central processing unit (CPU), it
would be significantly slower. Instead the alternate solution
of rendering to a reconstructed cube map keeps the 2-D map
views interactive by decoupling raster reconstruction from
map projection. This removes the need to perform expensive
per-vertex map projections for each rendered frame and re-
moves the need to clip rotated tectonic polygon meshes to the
2-D map boundary (the reconstructed cube map is aligned
with the central meridian of the map projection). The con-
tents of the reconstructed cube map are rendered to the 2-D
map view using a static latitude–longitude mesh with each
vertex containing a 2-D map view position and its associated
3-D position on the globe. To access the reconstructed raster
data the graphics hardware projects the 3-D position, in each
vertex, into a reconstructed cube map tile texture. The mesh
tessellation is dense enough to provide a visually accurate
sampling of the map projection. And tile LOD determination
and visibility culling for a 2-D map view is done using the
hierarchical partitioning of the reconstructed cube map (in a
similar manner to that described in Sect. 3).

Figure 10 shows a raster reconstructed with two tectonic
plates in a 2-D map projection view (similar to Fig. 9, which
instead uses the 3-D orthographic view). Note that, unlike
Fig. 9c, the cube map tiles in Fig. 10c do not retain their
shape after rotation. This is due to the 2-D map projection
and is particularly noticeable with Antarctica.

Figure 9. The GPlates “3-D Orthographic” view of the ETOPO1
global raster (Amante and Eakins, 2009) reconstructed to 140 Ma
using the Australian and Antarctic continents. The cube map tiles
are highlighted in different colours.(A) The entire unreconstructed
raster with the tectonic polygon meshes overlaid on top. Note the
cube-like arrangement of tiles – two cube corners are noticeable
in the pattern of tiles.(B) The tectonic polygon meshes in their
present-day (0 Ma) locations essentially cut out polygon-shaped
blocks in the global raster and its tiles.(C) The tectonic polygon
meshes in their reconstructed locations at 140 Ma. Each plate rota-
tion is illustrated by a curved arrow. The raster and its tiles rotate
independently with each tectonic polygon mesh.

www.solid-earth.net/5/741/2014/ Solid Earth, 5, 741–755, 2014

752 J. Cannon et al.: Plate tectonic raster reconstruction in GPlates

Figure 10.The GPlates “Robinson” 2-D map projection view of the
ETOPO1 global raster (Amante and Eakins, 2009), reconstructed
to 140 Ma for continental Australia and Antarctica. The cube map
tiles are highlighted in different colours. This is the equivalent of
Fig. 9 but with a 2-D map projection view instead of the 3-D or-
thographic view.(A) The entire unreconstructed raster with raster
tiles following a cube-like arrangement.(B) The tectonic polygons
in their present-day (0 Ma) locations.(C) The tectonic polygons in
their reconstructed locations at 140 Ma. Each plate rotation is illus-
trated by a curved arrow.

4.2 Combining multiple rasters

So far we have dealt with a single reconstructed source raster.
In Sects. 4.3 and 4.4, new rasters are introduced that are com-
bined with the source raster in different ways. However, two

rasters cannot easily be combined if they have different geo-
referencing or different raster inbuilt map projections. This is
because the geo-referenced tiles of two different rasters will
not, in general, be aligned across the two rasters or projected
in the same way and hence cannot be paired or associated.
But since all rasters have the same cube map spatial parti-
tioning, regardless of their individual geo-referencing, they
can be combined after their cube maps have been generated.
This procedure is used for age grids and surface normal maps
in the following sections.

4.3 Enhancing raster reconstruction with a crustal age
grid

Each tectonic polygon has a time of appearance and disap-
pearance corresponding to the geological time period over
which the crust, contained within the interior of the polygon,
existed on the Earth’s surface. The pseudocode in Fig. 7 ren-
ders only the subset of tectonic polygons that exist at a par-
ticular reconstruction time. In order to simulate the gradual
generation of oceanic crust at mid-ocean ridges, many long,
thin oceanic polygons with varying times of appearance have
been digitized along these ridges. These oceanic polygons
progressively appear as GPlates animates the reconstruction
time forward in time. However, the granularity of this transi-
tion is still quite coarse, with regions (the size of polygons)
continually popping into view. A finer per-pixel granularity
is achieved by using an age grid raster.

The age grid is a separate raster that contains the time of
appearance in each pixel (Müller et al., 2008). It follows the
same principle as polygons but is reduced in spatial extent
to pixel-size regions of crust. The tectonic polygons are still
used during raster reconstruction, but now the per-polygon
age comparison is replaced with a per-pixel age compari-
son, effectively removing the polygon popping. This per-
pixel comparison is efficiently performed using the graph-
ics hardware. For OpenGL 2.0 hardware this test is sim-
ply a floating-point comparison in an OpenGL Shading Lan-
guage (OpenGL Architecture Review Board, 2014) shader
program. For older hardware some rendering trickery using
fixed-point hardware and four texture units is required to sim-
ulate this comparison. Figure 11 shows the reconstruction of
a raster with and without the assistance of an age grid.

4.4 Enhancing visual detail with surface normal maps

A raster can be visually transposed onto another raster by
combining the colour of the first raster with the surface light-
ing of the second. The second raster is treated like a height-
field from which surface relief shading is generated. The
colour of the first raster is then modulated with the surface
lighting (intensity) of the second raster to get the final out-
put colour. Figure 12 shows two rasters that source lighting
from themselves and from each other. Figure 12d uses the
age grid for surface relief (height-field) – the regions near the

Solid Earth, 5, 741–755, 2014 www.solid-earth.net/5/741/2014/

J. Cannon et al.: Plate tectonic raster reconstruction in GPlates 753

Figure 11.The global free-air gravity raster (Andersen et al., 2010),
reconstructed to 21 Ma. Overlaid on top is the static polygon data
set (Seton et al., 2012) used to reconstruct the raster. Note the many
long, thin oceanic polygons.(A) Reconstructed without using an
age grid. The gap between Africa and South America is a result of
the per-polygon age test.(B) Reconstructed using an age grid. The
gap is no longer present because the age test is now per-pixel.

mid-ocean ridge (between Africa and South America) appear
to have a lower elevation than surrounding regions due to the
lower age grid values.

Surface lighting is recalculated and combined as the raster
is reconstructed to geological times. In other words, surface
relief shading is not prebaked into the raster but calculated
interactively as diffuse lighting using the light direction and
rotated surface normals. The surface normal tiles are gener-
ated on the fly from raw numerical (height) raster data as
an extension of the streaming process (Sect. 2.4). This is
done on the GPU to enhance performance when floating-
point textures and OpenGL Shading Language (OpenGL
Architecture Review Board, 2014) are supported. However,
these generated surface normals are in the tangent space of
the geo-referencing (aligned with the raster). When the geo-
referenced surface normal raster is rendered into a cube map,
the surface normals are converted to world space (aligned
with the global Cartesian coordinate system). This enables a
surface lighting cube map to be combined with another raster

Figure 12. The left side shows the oceanic crustal age grid raster
(Müller et al., 2008). The right side shows the General Bathymetric
Chart of the Oceans (GEBCO) raster (Goodwillie, 2003).(A) age
grid colour only;(B) GEBCO colour only;(C) age grid colour with
age grid relief;(D) GEBCO colour with age grid relief;(E) age grid
colour with GEBCO relief;(F) GEBCO colour with GEBCO relief.

cube map (since the raster-specific geo-referencing depen-
dency has been removed).

4.5 Analyzing reconstructed numerical raster data

The GPU is typically a separate processor with its own high-
speed memory for storing working data (such as textures
and rendered images). GPlates visualizes reconstructed nu-
merical (floating-point) raster data by first translating it to
colour data before uploading to the GPU as 8-bit-per-channel
RGBA textures (supported by all graphics hardware). The re-
constructed RGBA raster data is then scanned straight from
GPU memory to the display screen. In this case the original
(untranslated) floating-point raster data is not reconstructed.
This is fine for visualization; however, there are situations
where GPlates needs to access the reconstructed floating-
point raster data itself.

Reconstructed raw numerical raster data is needed when
GPlates exports to numerical image file formats (such as
NetCDF) for analysis by other software. It is also needed in
the data-mining front-end of GPlates (Landgrebe and Muller,
2011) where raster data is co-registered with seed geometries
by applying operations (such as mean and standard devia-
tion) to the reconstructed numerical raster pixels within a re-
gion of interest of the seed geometries (the details of which
are beyond the scope of this article).

GPlates can reconstruct raw numerical raster data (as op-
posed to RGBA raster data), provided the graphics hardware

www.solid-earth.net/5/741/2014/ Solid Earth, 5, 741–755, 2014

754 J. Cannon et al.: Plate tectonic raster reconstruction in GPlates

has support for floating-point textures. In this case nu-
merical raster data is first uploaded to the GPU as two-
channel floating-point textures. One channel is used for the
floating-point raster data and the other is for the raster cov-
erage or opacity. The numerical raster data is then recon-
structed on the GPU and rendered into floating-point tar-
get textures. This reconstructed raster data is then asyn-
chronously downloaded from the GPU using pixel buffers
(GL_ARB_pixel_buffer_object OpenGL extension) to avoid
stalling the CPU, thereby allowing it to keep the GPU busy
with subsequent reconstruction tasks.

5 OpenGL in GPlates

GPlates can visualize reconstructed raster data on any graph-
ics hardware manufactured in the last decade. This is be-
cause raster reconstruction visualization requires only base
OpenGL 1.1 functionality plus support for destination alpha
(for writing raster opacity to target textures) and four texture
units; this is well supported by all graphics hardware from
that time period.

However, some remote desktop software (where GPlates
runs on the remote system) lacks support for hardware-
accelerated graphics and falls back on OpenGL software ren-
dering. This can be problematic if the software rendering is
either too slow or lacks support for destination alpha and four
texture units. An example of the latter case is Microsoft’s
OpenGL 1.1 software renderer, written in 1996 (and essen-
tially unchanged since).

In general GPlates takes advantage of more ad-
vanced graphics functionality when it is available but
does not require it. For example the OpenGL Shad-
ing Language (GLSL) (OpenGL Architecture Review
Board, 2014), based on the syntax of the C program-
ming language, affords GPlates more flexibility and per-
formance in rendering and also enables normal map sur-
face lighting. GPlates also makes heavy use of render-to-
texture during raster reconstruction, and the well-supported
GL_EXT_framebuffer_object capability improves perfor-
mance by enabling direct rendering to textures – with
GPlates falling back on indirect rendering, via the main
frame buffer, when this is not supported.

Reconstructing raw numerical (floating-point) raster
data for non-visualization purposes such as raster ex-
port or analysis requires graphics hardware supporting the
GL_ARB_texture_float and GL_ARB_pixel_buffer_object
OpenGL capabilities as well as GLSL (roughly equivalent
to the functionality of OpenGL version 2.1), which, while
not as ubiquitously supported as OpenGL 1.1, is still well
supported by most graphics hardware in use today.

6 Discussion

The main advantage of cube maps in a GPlates context is a
simplified implementation of raster reconstruction. The cube
map approach decouples the rendering of the geo-referenced
raster from its reconstruction, thereby avoiding the need to
find the spatial intersections of tectonic regions within the hi-
erarchy of geo-referenced tile regions, which would, in turn,
require polygon-on-the-sphere intersection and triangulation
algorithms that are numerically robust in the presence of self-
intersecting polygons (with interior holes).

Another advantage of cube map rasters is the ability to
combine multiple rasters that have different geo-referencing,
such as enhancing reconstruction with an age grid (Fig. 11)
and visually transposing two rasters using surface relief light-
ing (Fig. 12).

Although only briefly mentioned before, a cube map raster
also enables efficient co-registration of a raster with seed ge-
ometries (points, polylines and polygons). This is because
the seed geometries are inserted into a spatial partition that
follows a hierarchical cube map structure analogous to that
of the raster’s cube map. This enables spatial associations
between the raster and seed geometries to be quickly found.

A potential disadvantage of the cube map approach is
that the intermediate cube map generation phase results in
an additional resampling stage that can reduce the quality
of the raster data due to the bilinear filtering. For the 2-D
map views, there is a further cube map generation phase
(Sect. 4.1), resulting in another resampling stage.

Another disadvantage is the non-uniform sampling of the
cube map pixels that varies by a factor of approximately two,
or more accurately 3/sqrt(2), from a cube face centre to one
of its corners. For some cube map tiles this can result in up to
four (2× 2) times as many pixels rendered than is necessary
for no loss of visual detail. This disadvantage does lessen for
the higher-resolution LODs (since those tiles cover less area
of each cube face). However, the flexibility gained by having
a raster in cube map form is very advantageous.

7 Conclusions

This paper describes a method of reconstructing raster data
that integrates a cube environment map with multi-resolution
tile partitioning. This enables on-demand tile streaming,
level-of-detail rendering and hierarchical visibility culling to
be applied to rasters reconstructed by tectonic plate poly-
gons. Furthermore the partitioned cube map tiles require
only 4× 4 matrix transformations which are extremely well
supported by graphics hardware. With this implementation
GPlates can reconstruct raster data on a wide variety of desk-
top and laptop computers manufactured over the last decade,
enabling users to interactively visualize and analyse arbi-
trarily high-resolution geophysical raster data for geologi-
cal times in the past. This capability forms the basis for

Solid Earth, 5, 741–755, 2014 www.solid-earth.net/5/741/2014/

J. Cannon et al.: Plate tectonic raster reconstruction in GPlates 755

interactively building and improving plate reconstructions in
an iterative fashion, for tectonically complex regions as well
as for ancient supercontinent assemblies, which can easily be
analysed using GPlates by assigning geophysical grids and
geological data to individual tectonic elements and interac-
tively testing their alignment in alternative reconstructions
(Williams et al., 2012).

Acknowledgements.R. D. Müller and J. Cannon were supported
by ARC grant FL0992245, and J. Cannon and E. Lau were
also supported by the AuScope National Collaborative Research
Infrastructure (www.auscope.org.au/).

Edited by: J. C. Afonso

References

Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Re-
lief Model: Procedures, Data Sources and Analysis, US Depart-
ment of Commerce, National Oceanic and Atmospheric Admin-
istration, National Environmental Satellite, Data, and Informa-
tion Service, National Geophysical Data Center, Marine Geology
and Geophysics Division, 2009.

Andersen, O. B., Knudsen, P., and Berry, P. A.: The DNSC08GRA
global marine gravity field from double retracked satellite altime-
try, J. Geodesy., 84, 191–199, 2010.

Boyden, J. A., Müller, R. D., Gurnis, M., Torsvik, T. H., Clark, J. A.,
Turner, M., Ivey-Law, H., Watson, R. J., and Cannon, J. S.:
Next-generation plate-tectonic reconstructions using GPlates, in:
Geoinformatics: Cyberinfrastructure for the Solid Earth, edited
by: Keller, G. R. and Baru, C., Cambridge University Press,
Cambridge, 95–114, 2011.

Cox, A. and Hart, B. R.: Plate Tectonics: How It Works, Blackwell
Science Inc., 400 pp., 1986.

Fabri, A. and Pion, S.: CGAL: the Computational Geometry Algo-
rithms Library, in: Proceedings of the 17th ACM SIGSPATIAL
International Conference on Advances in Geographic Informa-
tion Systems, Seattle, Washington, 538–539, 2009.

Finkel, R. A. and Bentley, J. L.: Quad trees a data struc-
ture for retrieval on composite keys, Acta Inform., 4, 1–9,
doi:10.1007/BF00288933, 1974.

Goodwillie, A.: User Guide to the GEBCO One Minute Grid, Cen-
tenary Edition of the GEBCO Digital Atlas, GEBCO, 2003.

Greene, N.: Environment mapping and other applications
of world projections, IEEE Comput. Graph., 6, 21–29,
doi:10.1109/MCG.1986.276658, 1986.

Greiner, B.: Euler rotations in plate-tectonic reconstructions, Com-
put. Geosci., 25, 209–216, 1999.

Gurnis, M., Turner, M., Zahirovic, S., Dicaprio, L., Spa-
sojevich, S., Muller, R. D., Boyden, J., Seton, M.,
Manea, V. C., and Bower, D. J.: Plate reconstructions with
continuously closing plates, Comput. Geosci., 38, 35–42,
doi:10.1016/j.cageo.2011.04.014, 2012.

Kumar, M.: World geodetic system 1984: a modern and ac-
curate global reference frame, Mar. Geod., 12, 117–126,
doi:10.1080/15210608809379580, 1988.

Landgrebe, T. C. W. and Muller, R. D.: A Spatio-Temporal
Knowledge-Discovery Platform for Earth-Science Data, Digi-
tal Image Computing Techniques and Applications (DICTA),
2011 International Conference on 6–8 December 2011, 394–399,
doi:10.1109/DICTA.2011.73, 2011.

Müller, R. D., Sdrolias, M., Gaina, C., and Roest, W. R.:
Age, spreading rates and spreading asymmetry of the
world’s ocean crust, Geochem. Geophy. Geosy., 9, Q04006,
doi:10.01029/02007GC001743, 2008.

Neider, J., Davis, T., and Woo, M.: OpenGL, Programming Guide,
Addison-Wesley, 1997.

OpenGL Architecture Review Board: OpenGL Shading Language,
available at:http://www.opengl.org/documentation/glsl/(last ac-
cess: 22 January 2014), 2014.

Qin, X., Müller, R, D., Cannon, J., Landgrebe, T. C. W., Heine, C.,
Watson, R. J., and Turner, M.: The GPlates geological informa-
tion model and markup language, geoscientific instrumentation,
Methods Data Systems, 1, 111–134, doi:10.5194/gi-1-111-2012,
2012.

Sagan, H.: Hilbert’s Space-Filling Curve, in: Space-Filling Curves,
Universitext, Springer, New York, 9–30, 1994.

Seton, M., Müller, R., Zahirovic, S., Gaina, C., Torsvik, T., Shep-
hard, G., Talsma, A., Gurnis, M., Turner, M., and Maus, S.:
Global continental and ocean basin reconstructions since
200 Ma, Earth-Sci. Rev., 113, 212–270, 2012.

Warmerdam, F.: The Geospatial Data Abstraction Library, in:
Open Source Approaches in Spatial Data Handling, edited by:
Hall, G. B. and Leahy, M., Advances in Geographic Information
Science, Springer, Berlin, Heidelberg, 87–104, 2008.

Williams, L.: Pyramidal parametrics, ACM Siggraph Computer
Graphics, 17, 1–11, 1983.

Williams, S. E., Muller, R. D., Landgrebe, T. C. W., and Whit-
taker, J. M.: An open-source software environment for visu-
alizing and refining plate tectonic reconstructions using high-
resolution geological and geophysical data sets, GSA Today, 22,
4–9, doi:10.1130/GSATG139A.1, 2012.

www.solid-earth.net/5/741/2014/ Solid Earth, 5, 741–755, 2014

www.auscope.org.au/
http://dx.doi.org/10.1007/BF00288933
http://dx.doi.org/10.1109/MCG.1986.276658
http://dx.doi.org/10.1016/j.cageo.2011.04.014
http://dx.doi.org/10.1080/15210608809379580
http://dx.doi.org/10.1109/DICTA.2011.73
http://dx.doi.org/10.01029/02007GC001743
http://www.opengl.org/documentation/glsl/
http://dx.doi.org/10.5194/gi-1-111-2012
http://dx.doi.org/10.1130/GSATG139A.1

