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Reconstruction of subducted oceanic plateaus from plate tectonics 

We assume that the Shatsky Rise formed at the Pacific-Farallon-Izanagi triple 

junction
1,2

 between ~145-130 Ma
2
 with conjugates on the Farallon and Izanagi plates.  

The Hess Rise and its conjugate formed along the Pacific-Farallon ridge at ~110 Ma. 

An ellipsoidal configuration is assumed for these conjectured plateaus, with contours 

representing estimated maxima and minima extent of the now subducted plateau 

conjugates. Positions of the conjugate plateaus are inferred based on the geometry of the 

preserved plateaus, the age of the underlying ocean lithosphere and the associated mid-

ocean ridge system. The Pacific-Farallon ridge was reconstructed by deriving stage 

rotations from half-stage rotations with an assumption of spreading symmetry
3
. 

Reconstruction of the Pacific-Izanagi-Farallon triple junction additionally followed 

principles of triple junction closure
4
. The absolute reference frame used for the Pacific 

plate is based on a hybrid moving Indian-Atlantic hotspot
5
 and a fixed Pacific hotspot 

reference frame for times prior to 83.5 Ma
6
. Although motion between hotspots in the 

Indian-Atlantic and Pacific domains has been recognized
7-9

, moving Pacific hotspots 

have not been incorporated into our model as there are no published rotations available.  

Instead, we test two alternative fixed Pacific hotspot reference frames for times prior to 
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83.5 Ma
6,10

 and find a difference of < 300 km between models at 90 Ma.  We do not 

anticipate significantly more than 300 km of motion using a moving hotspot reference 

model over this 6.5 million year period (from 83.5-90 Ma) as this would require higher 

rates of motion of the Pacific plate for which there is no evidence. 
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Fig. S1: Migration of the Shatsky conjugate plateau with respect to the North American 

continent during the Late Cretaceous based on an inverse convection model
11,12

. The 

background shows temperature at 220 km depth, while color contours denotes isotherms 

of temperatures 60 °C lower than the ambient mantle at different depths. The grey area 

(tracer distribution) indicates the thickest part (core) of the Shatsky conjugate plateau. A 

secondary grey area along north Mexico after 76 Ma represents the arrival of the Hess 

conjugate. 
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Fig. S2: Surface topography (a) and seismic tomography
13

 at 120 km depth (b) of 

western South America. The dashed red lines indicate slab contours
14

 at 100 and 150 

km depth, respectively. The dashed black ellipse represents the putative Inca plateau 

subducting beneath Peru
14

. Note the topography low (presumably subsidence) above the 

Inca plateau which shows up as a fast seismic anomaly in b. Both surface subsidence 

and flat-slab formation associated with the subducting Inca plateau makes it a present-

day analogy of our model where subduction of the Shatsky conjugate plateau caused the 

slab to flatten while simultaneously inducing surface subsidence above the plateau 

during the Late Cretaceous.  
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Fig. S3: Comparison of the Farallon slab remnants revealed by both a P wave
13

 (left) 

and an S wave
15

 tomography (right). Seismic structures at four different depths under 

North America are shown. Note the similarity of the two models, especially those of the 

Farallon remnants (high seismic velocity anomalies).  
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