
Parallel Fast Multipole Boundary Element Method

for Crustal Dynamics

Leonardo Quevedo, Gabriele Morra, R. Dietmar Müller
The University of Sydney, School of Geosciences, EarthByte Group.
Madsen Building F09, The University of Sydney, NSW, 2006

E-mail: Leonardo.Quevedo@sydney.edu.au, Gabriele.Morra@sydney.edu.au,

d.muller@usyd.edu.au

Abstract. Crustal faults and sharp material transitions in the crust are usually represented as
triangulated surfaces in structural geological models. The complex range of volumes separating
such surfaces is typically three-dimensionally meshed in order to solve equations that describe
crustal deformation with the finite-difference (FD) or finite-element (FEM) methods. We
show here how the Boundary Element Method, combined with the Multipole approach, can
revolutionise the calculation of stress and strain, solving the problem of computational scalability
from reservoir to basin scales. The Fast Multipole Boundary Element Method (Fast BEM)
tackles the difficulty of handling the intricate volume meshes and high resolution of crustal
data that has put classical Finite 3D approaches in a performance crisis. The two main
performance enhancements of this method: the reduction of required mesh elements from cubic
to quadratic with linear size and linear-logarithmic runtime; achieve a reduction of memory
and runtime requirements allowing the treatment of a new scale of geodynamic models. This
approach was recently tested and applied in a series of papers by [2, 3, 4] for regional and global
geodynamics, using KD trees for fast identification of near and far-field interacting elements, and
MPI parallelised code on distributed memory architectures, and is now in active development
for crustal dynamics. As the method is based on a free-surface, it allows easy data transfer
to geological visualisation tools where only changes in boundaries and material properties are
required as input parameters. In addition, easy volume mesh sampling of physical quantities
enables direct integration with existing FD/FEM code.

1. Introduction
Geodynamic modelling is facing the challenge of dealing with ever increasing resolution data
on kinematic, topographic and material features of the Earth. Crustal deformation has been
traditionally studied by using Finite Difference (FD) and Finite Element Methods (FEM) on
models fitting such constraints, but the inherent 3 dimensional character of the physical system,
its associated complex composite rheologies, as well as its planetary scale that spans very large
variations in viscosity has taken this approaches to their limit.

We propose the Fast Multipole (FM) extension to the Boundary Element Method1 (BEM) as
the novel numerical method that is better suited for plate tectonics modelling involving processes
at planetary scales [2, 3, 4]. The FM-BEM speedup and low memory requirements derived
from the use of 3 dimensional analytical solutions defined only on the surface of the regions of

1 A general reference for FM-BEM is [1]



Figure 1. Initial state of the model

interest, allows solving on bigger and finer meshes in a more convenient lower dimensionality.
This suits more ambitious solutions to problems where global structures like the 10000 km wide
Pacific Plate are to be strongly coupled to small scale dynamics such as trench fault lubrication
occurring in 1-100 m thick lithospheric shear-zones [5]. Such improvement in performance opens
the door to effectively model such multiscale problems self-consistently, that is to let the system
follow fundamental forces like gravity in an unconstrained fashion, and reproduce the measured
quantities by tuning the unknown driving forces like slab pull, ridge push or mantle drag.

This paper is structured as follows. In section 2, we describe the geodynamical model, the
methodology of the solution and its governing equations. In section 3 we describe the FM-BEM
applied to the physical model, and in section 4 we summarise the results and present the scaling
behaviour of the solver on the number of processors.

2. Physical Model
Our initial configuration consists of a surface delimiting a region of lithosphere with the shape
of a Mid Ocean Ridge immersed in a spherical Earth as shown in figure 1. Following a self-
consistent approach, we obtain the stable ridge configuration and its associated stress map,
assuming strictly the presence of fundamental forces:

(i) Buoyancy difference between the lithosphere, the overlying air/water layer, and the
underlying mantle.

(ii) Viscous resistance of the mantle to lithospheric motion.
(iii) Resistance of the lithosphere to bending and stretching.

The buoyancy difference arising from the density difference between the lithosphere and its
surroundings is a critical property as it prevents the plate from sinking straight down [6]. The



mantle exerts a drag force on the lithosphere that controls the spreading rate by tuning energy
dissipation. In our simplified model the strength of the oceanic lithosphere remains constant
with a viscosity two orders of magnitude larger than that of the mantle.

The model is bootstrapped from an extrapolation of the 2 dimensional analytical solution
of oceanic lithospheric cooling [7]. Subsequently, the free-surface of the Earth is dynamically
adapted on top of the resulting lithospheric topography at each step to a depth of half of the
lithospheric thickness. This method is shown to create a physically consistent buoyancy force
for a plate [2] where the mantle–ocean density difference self-consistently sustains lithosphere
and allows free deformation of its upper surface, leading to oceanic topography. This requires
the introduction of a critical distance hcrit parameter between the boundary elements of Earth
and lithospheric surfaces. A low value of this parameter results in instabilities during numerical
computation, a high value leads to inaccuracies in the calculation of the uplifting force.

After obtaining an equilibrium configuration of the physical system where the characteristic
ridge shape is obtained and the spreading process starts, the displacement field is sampled in a
3 dimensional grid containing the region of interest. From this data the resulting stress field is
inferred.

2.1. Boundary Integral Formulation of Stokes Flow
Steady highly viscous flow governing the dynamics of the system is described by the Stokes
equation

∇ · σ + ρb = 0 (1)

where b represents the body forces and σij is the full stress tensor with positive tension.
Constitutive equations for viscous deformations can be written in terms of the strain rate tensor
ε̇ as

ε̇ij ≡
1
2

(vi,j + vj,i) =
1

2µ
σij (2)

where vi represents the velocity field components and µ is the dynamic viscosity.
Following the formulation of [8] one may recast (1) as an integral equation defined in the

boundary ∂D of the physical domain D

vj(x0) =
1

8πµ

∫
∂D

σik(x)nkGij(x,x0)dS(x) +
1

8π

∫
∂D

vi(x)nkTijk(x,x0)dS(x) (3)

where Gij and Tijk are the steady, Green’s functions for velocity and traction fields
respectively, also known as the Stokeslet and the Stresslet

Gij(x− x0) =
δij
r

+
x̂ix̂j

r3
,

Tijk(x− x0) = −6
x̂ix̂j x̂k

r5
,

with x̂ = x− x0 and r = |x̂|. (4)

A more appropriate form of the boundary integral equation (3) for multiphase flows in the
presence of a gravity field can be found by taking the viscosity of the mantle as a reference value
µ0, defining a relative viscosity λi = µi/µ0 and expressing the normal gravitational stress jump
induced by the differential density between regions separated by surfaces Si as

∆f = ∆ρ(b · x)n , (5)

being n the normal to the surface on the point x. With this, we can obtain the value of the
velocity field on the surfaces x ∈ Si from



1 + λi

2
v(x)−

N∑
j

1− λj

8π

∫ PV

Sj

n · T · v dS = − 1
8πµ0

N∑
j

∫
Sj

G ·∆f dS , (6)

where PV denotes the principal value of the integral.

2.2. Boundary Integral Formulation of Elasticity
Elastic constitutive equations are defined by

ε
(elastic)
ij =

1
2G

σij −
1

3K
pδij , (7)

where G and K are the constant elastic shear and bulk modulus respectively and p =
1
3(σ11 + σ22 + σ33) is the pressure. For elastic materials with a Poisson ratio of ν = 0.5 the
bulk modulus diverges K → ∞ and one can disregard the second term of the last equation,
obtaining a formulation analogous to the viscous one presented in (2). In this case one can use
a similar boundary integral (3) to solve the displacements ui in terms of the stress tensor σij

and the elastic shear, where the Green functions remain identical to the viscous ones.

uj(x0) =
1

8πG

∫
∂D

σik(x)nkGij(x,x0)dS(x) +
1

8π

∫
∂D

ui(x)nkTijk(x,x0)dS(x) (8)

In the elastic formulation, one may explore the effects of more complex boundary conditions
by simply changing the RHS in the analogous form of (6). This is essential to the simulation of
the short time scale dynamics of plate tectonics, where stress field is dominated by the action
of interplate and intraplate forces [9, 10]. On the same model that evolves through the million
years timescale we have an analogous framework to study instantaneous elastic behaviour. With
this boundary method, it is very easy to introduce traction and compressional forces to test the
interaction with its surroundings and gauge the effects of tectonic driving forces like slab pull.
Once values on the boundary have been established, one can use (3) to find the displacement
field everywhere in space, from which the stress field can be directly calculated.

3. Numerical Method
The surfaces Si and the supported quantities u, ∆f , . . . are discretised into panels which
correspond to the elements of a 3 dimensional triangulated mesh shown in figure 2, note that
the region surrounding the area of interest has been inhomogeneously refined with respect to the
rest of the sphere. The boundary integral equation (6) on the panels becomes the linear system

((1 + λ)/2 + T) U = F . (9)

Instead of fully populating the matrix operator in the left hand side of this equation, a
procedure that scales quadratically in the number of elements N for both memory requirements
and computation time, we use a fast multipole method (FMM)[11, 12, 13] for the evaluation of
the integrals in (6). The FMM scales as N log(N), which is far more tractable for large systems
and still allows the use of a Generalised Minimised Residual method (GMRES) or any Krylov
space based method that does not rely on the storage of the full matrix.

Multipole methods consist in a controlled approximation of a convolution that is valid when
its kernel decays, something which is assured in our case by the nature of Green’s functions (4).
More explicitly, to compute

u(x0) =
∫

D
G(x0 − x)ρ(x)dV (x) , (10)



Figure 2. Triangulated mesh of the physical model

we consider the contribution from a subset of the domain Di ⊂ D, that is far enough from our
evaluation point x0 and Taylor expand the kernel G around xc ∈ Di

u(x0) =
∫

Di

G(x0 − x)ρ(x)dV (x)

'
∫

Di

(G(x0 − xc)−∇G(x0 − xc) · (x0 − xc) + . . .) ρ(x)dV (x)

' G(x0 − xc)
∫

Di

ρ(x)dV (x)

−∇G(x0 − xc) ·
∫

Di

(x0 − xc)ρ(x)dV (x) + . . . (11)

This expansion involves successive moment integrals of the density distribution in Di, that is,
the multipoles. The FMM algorithm sorts the sources in a tree structure whose cells contain the
multipoles and carries out a field evaluation through a tree traversal. The desired precision in
the approximation of the interactions is determined by a tree traversal stopping criterion based
on a prescribed tolerance. The reader is referred to [11, 12, 13] for further details. The present
FMM code can handle convolutions with the Green’s functions for the Poisson equation, the
Stokeslet or the Stresslet, employing up to the second order moments of the source distributions
(quadrupoles).

To obtain the stress, the displacement field is sampled in a grid and the second order centred
finite difference gradient is calculated. Stress is then derived from the constitutive equations
(7).



Figure 3. Mid ocean ridge topography emerging from dynamical evolution of lithosphere-
mantle-surface interaction

4. Results and Performance
For a lithosphere model with 100 times the viscosity of the mantle, the characteristic ridge
topography arises self-consistently in the surface of the Earth as depicted in figure 3. The
dynamics begin with a transient regime where the lithosphere sinks and the surface of the Earth
adapts to this displacement until the system relaxes from the initial conditions to an equilibrium
plateau. In this stable state more realistic topographic and mechanical features arise and may
be compared with known data [14, 15].

Instead of proceeding with the Stokes flow simulation, the elastic stresses are studied by
changing (3) to the framework where it describes the elastic deformations of the material as
described in section 2.2. At this stage it is possible to impose additional boundary conditions to
represent any additional force that modifies the state of stress on the plate. The displacement
field is sampled in a 3 dimensional region of interest and used to construct a stress map which
is shown in figure 4. Though buoyancy suspends the lithosphere in isostasy there is a clear
boundary effect on the edges of the plate that have the tendency to subduct.

The total processing time as a function of the number of CPUs is shown on figure 5 shows the
parallel efficiency tested on the Silica Science and Engineering High Performance Computing
system at The University of Sydney. Silica is a SGI Altix XE1200 Cluster with Infiniband
connections in which each computing node has 8 processors. We have taken the maximum load
of a node (8 CPUs) as a reference. The shared tree implementation multipole integrals reduces
the communication load at the expense of memory requirements. Parallel efficiency is mainly
affected by geometrical mesh query and manipulation routines that are currently in process of
being parallelised.



Figure 4. Second stress invariant on the lithosphere surface

Figure 5. Parallel efficiency a function of the number of CPUs
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