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SHORT RESEARCH

PLATEAU-FORELAND TRANSITIONS AND CHANNEL-FLOW 

EXTRUSION

Fast and deep channel-fl ow extrusion (Bird, 1991) east of Tibet is 
based on two-dimensional (2-D) thin sheet models and uses, as observ-
ables, Tibet’s uplift history and the topography across the transition 
between the plateau and the foreland to the east. In these models, there 
is no horizontal shortening as a >5000-m-high plateau is infl ated by 
pumping material at a constant rate into one end of a 10–15-km-thick 
weak channel embedded within a stronger crust. The pressure gradient 
from the plateau forces the channel material 1500 km into the foreland 
(Royden, 1996; Royden et al., 1997; Clark and Royden, 2000; Royden et 
al., 2008; Medvedev and Beaumont, 2006). The input fl ux rate is chosen 
so a plateau elevation of 5000 m is reached in 20 m.y., compatible with 
the uplift history of Tibet, the elevation of which was established some-
time after 50 Ma and before 10 Ma (Clark et al., 2005; Dupont-Nivet et 
al., 2008). The topographic profi le at the transition between the plateau 
and the foreland is a function of the thickness of the channel region 
and its viscosity (Clark and Royden, 2000; Vanderhaeghe et al., 2003; 
Medvedev and Beaumont, 2006), and its surface width is a measure of 
the distance traveled by the material in the channel. The >1500-km-wide 
topographic profi le along Tibet’s eastern margin, on either side of the 
Sichuan Basin, requires a viscosity in the channel between 1018 and 1017 
Pa s (Clark and Royden, 2000). Continental crust may attain such vis-
cosities for temperatures >800 °C, or even >700 °C when melt is present 
(Medvedev and Beaumont, 2006).

This model poses a number of problems. First, convergence and the 
gravitational push of the plateau onto its foreland are not considered as a 
mode of plateau formation, yet viscous thickening of the foreland region 
can be critical to the topographic profi le at the plateau-foreland transi-
tion (Medvedev and Beaumont, 2006). Second, although temperatures 
>800 °C can be explained in the plateau by transient radiogenic heat-
ing, it is not clear how such a high temperature can be achieved in the 
foreland, and how it would not make the foreland more prone to viscous 
thickening under the gravitational push from the plateau. Third, in 2-D 
plane strain models, high plateaux can develop from weak crust because 

the latter cannot fl ow in a direction perpendicular to convergence. This 
may not be possible in three dimensions (3-D).

Recently, channel-fl ow extrusion was investigated using a quasi-3D 
indenter model (Cook and Royden, 2008). In this model, the viscosity 
of the reference crust is uniform with depth and laterally homogeneous. 
Upon convergence, a weak lower crust starts to develop when a critical 
crustal thickness (50 km) is reached. On the side of the indenter, there is 
a dormant “weak crust” region with the ability to weaken faster than the 
surrounding crust. With such a design, a 5 km plateau can develop with 
little channel-fl ow extrusion until the dormant “weak crust” thickens and 
differentiates a weak lower crust, at which stage the plateau lower crust 
“spills” into the weak foreland lower crust. In this model, the foreland 
region must become a plateau before channel-fl ow extrusion can develop, 
and therefore channel-fl ow extrusion is a consequence of crustal thicken-
ing and not its cause. In the model by Cook and Royden (2008), transport 
in the weak lower crust foreland may not exceed a few tens to a few hun-
dreds of kilometers, in contrast to the Clark and Royden (2000) model, 
in which channel-fl ow extrusion is the only mode of foreland thickening.

Hence, it is not clear whether a high plateau region can develop at a rate 
compatible with Tibet’s uplift history while developing a >1000 km tran-
sitional region via channel-fl ow extrusion in less than 15 m.y. To attempt 
a more realistic understanding of crustal fl ow, plateau uplift, and plateau-
foreland dynamics, we consider fi rst a generic model of plateau formation 
in a triaxial stress setting, which suggests that, for average continental 
rheologies, Tibet could only have developed at the expense of a continen-
tal crust with a Moho temperature of 500–600 °C, a range incompatible 
with channel-fl ow extrusion >1000 km. Using this temperature range, we 
turn to 2-D numerical modeling and show that under such a condition, the 
length scale of channel-fl ow extrusion is an order of magnitude smaller 
than previously thought.

PLATEAU UPLIFT, ELEVATION, AND MOHO TEMPERATURE

In a 3-D setting, orogenic plateaux express the balance between the 
rate of thickening related to convergence and the rate of thinning related 
to lateral gravitational fl ow. Triaxial thin viscous sheet models (Fig. 1A) 
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have shown that both the uplift rate and the plateau elevation depend on 
the geotherm (Rey and Houseman, 2006; Rey and Coltice, 2008). Given 
Tibet’s average elevation (~5000 m) and assuming that the plateau devel-
oped over the past 10–50 m.y., one can reconstruct the temperature at the 
Moho prior to thickening. Figure 1B shows the uplift history of a conti-
nental lithosphere for various prethickening Moho temperatures when this 
lithosphere is submitted to a triaxial state of stress, isostasy, and radio-
genic heating. Using standard crustal and mantle rheologies (see GSA 
Data Repository1), our models require a tectonic force of 1013 N m–1 to 
reach an elevation compatible with that of Tibet. Our triaxial experiments 
also reveal that, in order to match both the timing of Tibetan uplift and 
its elevation, the continental lithosphere requires a prethickening Moho 
temperature in the range of 500–600 °C, well below the 700–800 °C nec-
essary for channel-fl ow extrusion >1000 km. A plateau developing at the 
expense of a hot lithosphere (Figs. 1B and 1C) cannot match both the 
timing of Tibetan uplift and Tibet’s elevation. Therefore, the proposition 
that channel-fl ow extrusion is >1000 km in east Tibet is incompatible with 
Tibet’s elevation and uplift history.

MODES OF OROGENIC MASS TRANSFER AND PLATEAU COLLAPSE

We use fully coupled thermo-mechanical numerical experiments to 
examine the modes of orogenic mass transfer between plateau and fore-
land in a context in which crustal rheologies allow building of an oro-
genic plateau, and where the foreland is fi xed or slowly retreats. The 
model setup (Figs. 2A

0
 and 2B

0
) describes a plateau-foreland transition 

after convergence has stopped, and also approximates a plateau “neutral 
margin” (Medvedev and Beaumont, 2006), such as the eastern margin 
of the Tibetan Plateau, on which convergent plate motion has a limited 
effect. We use frictional plastic and laboratory-derived viscous rheologies 
dependent on temperature, stress, strain rate, and melt fraction, along with 
melt-dependent viscosities and densities (see GSA Data Repository item 
[see footnote 1]). The role of erosion, already studied in detail (Beaumont 

et al., 2001, 2004), is not included in our experiments. Instead, we intro-
duce weak fault-shaped anomalies and use a strain weakening function to 
induce heterogeneous deformation in an otherwise strong upper crust; this 
weakening promotes the localization of upward fl ow in the plateau and 
thrusting in the foreland.

The foreland region is in thermal equilibrium and has a Moho tempera-
ture of 560 °C, and the plateau region has accommodated some degree of 
thermal relaxation. Two cases are considered: (1) the Moho in the plateau 
region has reached 790 °C, and there is no melt at the onset of collapse 
(Fig. 2A

0–4
); and (2) the Moho in the plateau region has reached 870 °C, 

and the temperature in the lowest 14 km of the plateau crust is above the 
solidus, with a maximum melt fraction of 24% (Fig. 2B

0–4
), compatible 

with melt fraction estimates beneath Tibet (Schilling and Partzsch, 2001). 
Although a very weak foreland would not allow the development of a 
plateau, we tested the unlikely confi guration in which an orogenic plateau 
is adjacent to a foreland for which viscosity is reduced by two orders of 
magnitude (Figs. 2A

4
 and 2B

4
) with a minimum of 1018 Pa s at the Moho.

Our results show that under fi xed boundary conditions (Figs. 2A
l–2

 
and 2B

l–2
), plateau collapse is accommodated by a combination of lat-

eral channel-fl ow extrusion and upward mass transfer of the weak plateau 
channel that dynamically couples extension and the formation of a core 
complex in the plateau with shortening via thrusting in the foreland and 
bulk gravitational sliding of the plateau margin toward the foreland. As 
the weak plateau lower crust is partitioned into the foreland and the core 
complex, horizontal channel-fl ow extrusion competes with vertical fl ow in 
the plateau. Large melt fraction, large buoyancy of the channel, and weak 
foreland upper crust all favor the development of core complexes and 
coupled foreland shortening, which has the effect of impeding channel-
fl ow extrusion (Fig. 2B

1
). In contrast, small melt fraction, low buoyancy, 

and a strong foreland upper crust favor channel-fl ow extrusion (Fig. 2A
2
). 

Isostasy alone is able to exhume the plateau ductile crust into a metamor-
phic core complex, even when the lower crust is not buoyant (Fig. 2A

1–2
; 

Wdowinski and Axen, 1992; Rey et al., 2009).
Divergent boundary conditions contribute to provide the necessary space 

for gravitational collapse (Rey et al., 2001) and the development of core 
complexes. Hence, one can expect that, under divergent boundary condi-
tions, plateau-foreland coupling would be less important and surface exten-
sion in the plateau would be less dependent on the shortening of the foreland. 

1GSA Data Repository Item 2010241, details on the density and thermal and 
rheological structures of the numerical models, is available at www.geosociety
.org/pubs/ft2010.htm, or on request from editing@geosociety.org, Documents 
Secretary, GSA, P.O. Box 9140, Boulder, CO 80301-9140, USA.
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Under slow divergent boundary conditions (left side moving to the left at 
0.23 cm yr–1), the plateau fl ank travels 74 km in 5 m.y. at an average velocity 
of 1.5 cm yr–1, approximately fi ve times as fast as the imposed retreat of the 
foreland (Figs. 2A

3
 and 2B

3
). Consequently, stronger foreland shortening 

develops, accommodated by preexisting and newly formed reverse faults. 
A combination of gravity sliding and rear push from the developing gneiss 
(migmatite) dome in the plateau drives the motion of the plateau margin 
toward the foreland. There is a positive feedback between localized stretch-
ing in the plateau upper crust, induced by slow divergence, and the forma-
tion of a metamorphic core complex, which becomes the dominant driver 
of extension in the plateau and shortening in the foreland. Under fast diver-
gence (2.3 cm yr–1, not shown here), shortening of the foreland and channel-
fl ow extrusion are reduced, while extension in the plateau is enhanced.

In the case in which the foreland is very weak but the plateau lacks melt-
enhanced buoyancy (Fig. 2A

4
), channel-fl ow extrusion is the dominant 

mode of collapse, even though a gneiss dome has developed in the plateau. 
In sharp contrast, where plateau buoyancy is enhanced by partial melting 
(Fig. 2B

4
), the plateau gravitational push is suffi ciently strong to shorten 

the whole foreland, displacing the fl ank of the plateau 100 km toward the 
foreland in less than 2 m.y. at an average velocity of 5 cm yr–1. As in the 
model in Figure 2B

3
, shortening is coupled to an equivalent amount of 

extension in the plateau, which accommodates the formation of a large 
metamorphic core complex, in which the weak channel is exhumed.

In experiments most favorable to channel-fl ow extrusion, where fore-
land rheology allows for the development of an orogenic plateau, a wedge-
shaped channel of the plateau lower crust travels at most 150 km into the 
foreland after 12 m.y. of gravitational collapse (Fig. 2B

2
). After only a few 

million years, the velocity of the channel front drops sharply from a few 
centimeters per year to 1 cm yr–1 or less when buoyant melt is present. This 
velocity decrease occurs as the pressure gradient at the foreland-plateau 
transition decreases and the hot channel cools to 500–650 °C as it travels 
into the foreland. Channel-fl ow extrusion is further inhibited by upward 
fl ow of the weak channel into metamorphic core complexes. Overall, 
channel fl ow velocities 10 cm yr–1, which are necessary for channel-fl ow 
extrusion to travel 1500 km in 15 m.y., are not tenable.

APPLICATION TO SOUTHEAST TIBET

Despite ongoing shortening on Tibet’s southern, northern, and east-
ern margins (Zhang et al., 2004; England and Molnar, 2005; Shen et al., 

2005), east-west extension has been the dominant tectonic regime in the 
plateau since 15 Ma (Armijo et al., 1989; Molnar and Lyon-Caen, 1989). 
Conjugate strike-slip faults and N-S–trending normal faults with up to 
7 km of vertical offset accommodate E-W extension in central and south-
ern Tibet (Blisniuk et al., 2001). In southern Tibet, N-S–trending shear 
zones exhumed deep crust into metamorphic core complexes during oro-
gen-parallel extension (Murphy et al., 2002; Jessup et al., 2008). In addi-
tion, channel fl ow related to aggressive erosion along the Himalayan front 
has been proposed to explain the exhumation of North Himalayan high-
grade gneiss and leucogranite (Beaumont et al., 2001; Klemperer, 2006). 
Our experiments confi rm that coeval extension in the plateau and con-
traction in the adjacent foreland is compatible with gravitational collapse 
under fi xed or slowly retreating boundary conditions. In SE Tibet, the SE 
gradient in both crustal thickness and topography combined with limited 
upper-crustal shortening are the basis for the proposal of at least 400 km of 
SE-directed channel fl ow (Schoenbohm et al., 2006). Assuming that chan-
nel fl ow started 13 m.y. ago, following the rise of eastern Tibet (Schoen-
bohm et al., 2006; Clark et al., 2005), channel-fl ow extrusion can hardly 
have exceeded 150 km. The strong correlation between seismic anisotropy 
and surfi cial geology, including geodetic data, suggests a strong coupling 
between the crust and the mantle under E and SE Tibet (Holt, 2000; Sol 
et al., 2007). If the upper-crustal shortening has not been underestimated, 
then one can envision that crustal thickening is partitioned into the lower 
crust, possibly via bulk transpression against the Indian plate and around 
the eastern syntaxis, while strike-slip faulting affects the upper crust.

CONCLUSIONS

Tibet’s uplift history and plateau elevation limit prethickening Moho 
temperatures to between 500 and 600 °C, a temperature range incompat-
ible with channel-fl ow extrusion >1000 km. For rheologies and tempera-
tures compatible with Tibet, our numerical experiments show that the rate 
of channel-fl ow extrusion is an order of magnitude smaller than previ-
ously proposed for eastern Tibet (i.e., 1 cm yr–1 rather than 10 cm yr–1). 
Over 15 m.y., the length scale of channel-fl ow extrusion is 150 km rather 
than 1500 km. Our results show that during the plateau-growth stage of 
orogenic evolution, when extension associated with lateral gravitational 
spreading balances convergence-driven thickening, and when conver-
gence slows or stops, mass is redistributed from the plateau to the foreland 
via a number of strongly coupled processes (Fig. 3), including: (1)  gravity 

Foreland (40-km-thick crust) Plateau (70-km-thick crust)

Moho

Brittle crust

Ductile crust

1

2

3

56

4

Figure 3. Conceptual model of gravity-driven plateau growth and orogenic collapse processes. Mass transfer is accommodated 

by (1) gravitational sliding of the edge of the plateau onto the foreland, (2) channel-fl ow extrusion of the plateau lower crust 

into the foreland, (3) upper-crustal extension and upward fl ow of the plateau lower crust into metamorphic core complexes, 

(4) upward fl ow of the plateau lower crust into regions of aggressive erosion, (5) shortening of the foreland immediately adja-

cent to the plateau, and (6) retreat of the foreland, promoting bulk extension and thinning of the plateau region.
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sliding of the plateau margin toward the foreland; (2) channel-fl ow extru-
sion of plateau lower crust into the foreland lower crust; (3) upward fl ow 
of lower crust channel toward a domain of upper-crust extension to form 
a metamorphic core complex or (4) a site of focused erosion as shown by 
Beaumont et al. (2001); and (5) coeval contraction of the foreland, which 
balances extension in the plateau.
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