A New View of Deep Earth’s Carbon Emissions

EOS: Advances in plate tectonics research allow a deeper understanding of how greenhouse gases escape from within the planet. by Saima May Sidik7 November 2024 Gases escape from the deep-sea Champagne Vents in the Northern Marianas region of the Pacific, where tectonic plates are colliding. Credit: Submarine Ring of Fire 2014 – Ironman, NOAA/PMEL, NSF Source: Geochemistry, Geophysics, … Read more…

Leveraging Machine Learning and Geophysical Data for Automated Detection of Interior Structures of Cratons

The internal structures and discontinuities of cratons hold considerable economic value due to their tendency for reactivation and different horizontal stress, serving as conduits for fluid flow and mineral deposition over time. Detecting these structures at various depths is critical for accurately mapping prospective zones of metallic mineralisation. This study demonstrates the effectiveness of integrating … Read more…

rgplates now part of GPlates software family

rgplates has joined the GPlates family! rgplates allows the integration of tectonic calculations into the R software environment for statistical computing and graphics. Paleogeographic reconstructions in GPlates can be directly connected to a vast number of statistical libraries available in R, which is also the primary scripting language of the paleobiology community. The figure below … Read more…

EarthByte Group research assistant Lauren Ilano receives Peter Fountain Award

Our longest-serving EarthByte Group research assistant, Lauren Ilano, has recently been awarded the Peter Fountain Award together with Caelan Hearne in memory of Peter Fountain, who was a beloved Maritime industry legend with PIANC Australia & New Zealand.  The award supports outstanding young engineers in their careers as well as their attendance at the PIANC … Read more…

Collaboration between artificial intelligence and Earth science communities for mutual benefit

A recent analysis concluded that Australia is at risk of losing its world-leading advantage in critical and rare minerals if it doesn’t sufficiently leverage artificial intelligence (AI). A large international coalition of Earth scientists and AI researchers is now advocating for stronger bidirectional development and impact between AI and Earth science in a new comment … Read more…

Net Zero Institute White Paper on Critical Minerals and Materials released

The University of Sydney’s Net Zero Institute has just released their White Paper on Critical Minerals & Materials. It represents a massive collaborative effort of over 50 colleagues from the University and international partners. The EarthByte Group has made a contribution to it with an outline of AI-powered mineral prospectivity mapping, particularly applied to copper … Read more…

Faculty of Science News: Leading Faculty of Science researcher awarded prestigious AAS Mawson Medal and Lecture

Leading Faculty of Science researcher awarded prestigious AAS Mawson Medal and Lecture Congratulations to Dr Adriana Dutkiewicz who was formally awarded the AAS Mawson Medal late last month, the first woman to ever receive this illustrious award. Dr Dutkiewicz was awarded the medal at the 70th birthday celebration of the Australian Academy of Science in … Read more…

Spatio-temporal copper prospectivity in the American Cordillera predicted by positive-unlabeled machine learning

Porphyry copper deposits contain the majority of the world’s discovered mineable reserves of copper. While these deposits are known to form in magmatic arcs along subduction zones, the precise contributions of different factors in the subducting and overriding plates to this process are not well constrained, making predictive prospectivity mapping difficult. Empirical machine learning-based approaches … Read more…

The Conversation: Witness 1.8 billion years of tectonic plates dance across Earth’s surface in a new animation

Two tectonic plates meet in Thingvellir National Park, Iceland. VisualProduction/Shutterstock Alan Collins, Univ of Adelaide Using information from inside the rocks on Earth’s surface, we have reconstructed the plate tectonics of the planet over the last 1.8 billion years. It is the first time Earth’s geological record has been used like this, looking so far back … Read more…

Geoscience Frontiers: Earth’s tectonic and plate boundary evolution over 1.8 billion years

Understanding the intricate relationships between the solid Earth and its surface systems in deep time necessitates comprehensive full-plate tectonic reconstructions that include evolving plate boundaries and oceanic plates. In particular, a tectonic reconstruction that spans multiple supercontinent cycles is important to understand the long-term evolution of Earth’s interior, surface environments and mineral resources. Here, we present a new full-plate tectonic reconstruction from 1.8 Ga to present that combines and refines three published models: one full-plate tectonic model spanning 1 Ga to present and two continental-drift models focused on the late Paleoproterozoic to Mesoproterozoic eras. Our model is constrained by geological and geophysical data, and presented as a relative plate motion model in a paleomagnetic reference frame. The model encompasses three supercontinents, Nuna (Columbia), Rodinia, and Gondwana/Pangea, and more than two complete supercontinent cycles, covering ~40% of the Earth’s history. Our refinements to the base models are focused on times before 1.0 Ga, with minor changes for the Neoproterozoic. For times between 1.8 Ga and 1.0 Ga, the root mean square speeds for all plates generally range between 4 cm/yr and 7 cm/yr (despite short-term fast motion around 1.1 Ga), which are kinematically consistent with post-Pangean plate tectonic constraints. The time span of the existence of Nuna is updated to between 1.6 Ga (1.65 Ga in the base model) and 1.46 Ga based on geological and paleomagnetic data. We follow the base models to leave Amazonia/West Africa separate from Nuna (as well as Western Australia, which only collides with the remnants of Nuna after initial break-up), and South China/India separate from Rodinia. Contrary to the concept of a “boring billion”, our model reveals a dynamic geological history between 1.8 Ga and 0.8 Ga, characterized by supercontinent assembly and breakup, and continuous accretion events. The model is publicly accessible, providing a framework for future refinements and facilitating deep time studies of Earth’s system. We suggest that the model can serve as a valuable working hypothesis, laying the groundwork for future hypothesis testing.

Click on the image to watch the video on youtube

Cao, X., Collins, A.S., Pisarevsky, S., Flament, N., Li, S., Hasterok, D. and Müller, R.D., 2024. Earth’s tectonic and plate boundary evolution over 1.8 billion years. Geoscience Frontiers, p.101922.

Download the plate model from zenodoRead more…

Share

Applied Geochemistry: Multivariate statistical analysis and bespoke deviation network modeling for geochemical anomaly detection of rare earth elements

Rare earth elements (REEs), a significant subset of critical minerals, play an indispensable role in modern society and are regarded as “industrial vitamins,” making them crucial for global sustainability. Geochemical survey data proves highly effective in delineating metallic mineral prospects. Separating geochemical anomalies associated with specific types of mineralization from the background reflecting geological processes … Read more…

Geology: Submarine volcanism along shallow ridges did not drive Cryogenian cap carbonate formation – Reply

In their comment, Gernon et al. (2024) maintain that their “shallow ridge hypothesis” for cap carbonate formation (Gernon et al., 2016) is valid, disregarding abundant evidence to the contrary. Here we address four flaws in their argument. First, their hypothesis (Gernon et al., 2016) is based on a “proof by example” argument—a logical fallacy. Evidence … Read more…

Gondwana Research: Mapping paleoelevations along active continental margins with igneous geochemistry: A case study from South America

Mountains and mountain ranges, often situated at convergent plate margins, play a pivotal role in many fields of the Earth, climate, and biological sciences. Reconstructing past episodes of mountain building from the geological rock record is one of the main challenges for unravelling the ancient physical geography of Earth’s surface. Established methods for quantifying past … Read more…

Elements: Archean Geodynamics Underneath Weak, Flat, and Flooded Continents

Although a significant volume of crust was extracted from the mantle early in Earth’s history, the contribution of felsic rocks to the sedimentary record was minimal until ~3.0 Ga. On a hotter Earth, this conundrum dissipates if we consider that the felsic crust was buried under thick basaltic covers, continents were flooded by a near-global … Read more…

Keynote Talk at Exploration in the House: Critical minerals – prospectivity mapping using generative AI

In the recent Exploration in the House event at Parliament House in Sydney Dietmar provided an overview of the use of generative AI for assessing copper, nickel and cobalt prospectivity in the Lachlan fold belt, based on the Honours thesis of Nathan Wake, and work by Ehsan Farahbakhsh and Vera Nolte-Wilson. The event also featured … Read more…

Exploration in the House: AI, new data, new exploration futures

EXPLORATION IN THE HOUSE – NEW DATA, NEW EXPLORATION FUTURES The half-day event on Friday 10 May will feature a keynote presentation on the applications of artificial intelligence-driven data processing in the search for critical minerals. Join Mining, Exploration and Geoscience for Exploration in the House – New data, new exploration futures at the NSW … Read more…

Space News: Surprising connections between Earth and Mars

Space Connect reported how EarthByters discovered that Earth’s interactions with Mars can drive deep sea circulation here on Earth. The podcast covers how geological records of the deep sea were used to discover a link between the orbits of the two planets and past global warming patterns, talking through the research and their collaboration with Sorbonne … Read more…

Quirks and Quarks: EarthByte on Canadian National Radio with a story on Earth, Mars and ocean mixing

Mars has more influence on Earth than non-astrologers might have thought. Mars is, on average, about 225 million kilometres from Earth, which would suggest that it has little impact on our planet. Which is true, but as they say, a little goes a long way. In our recent paper in Nature Communications, we studied the history of deep … Read more…

Mars attracts: how Earth’s planetary interactions drive deep-sea circulation

12 March 2024, The University of Sydney Media Release Giant whirlpools in warming oceans could mitigate Gulf Stream stagnation Geoscientists at Sydney and Sorbonne have identified a 2.4-million-year cycle in the geological record that show the energy of deep-sea currents wax and wane as oceans cool and warm. Earth’s distance to Mars varies between 55 … Read more…

Nature Communications: Deep-sea hiatus record reveals orbital pacing by 2.4 Myr eccentricity grand cycles

Astronomical forcing of Earth’s climate is embedded in the rhythms of stratigraphic records, most famously as short-period (10^4–10^5 year) Milankovitch cycles. Astronomical grand cycles with periods of millions of years also modulate climate variability but have been detected in relatively few proxy records. Here, we apply spectral analysis to a dataset of Cenozoic deep-sea hiatuses … Read more…

AuScope News: EarthByters unveil Ice Age secrets

Notebook resting on an Ice Age or the transition from the Tonian Skillogallee and Myrtle Springs Formations to the overlying Cryogenian Sturt Formation (Sturt Glaciation, marked by the notebook) in the Willouran Ranges, Adnyamathanha Country, South Australia. Image: Alan Collins ARC Future Fellow Dr Adriana Dutkiewicz from the EarthByte Group and colleagues have used NCRIS … Read more…

New data set for refined boundaries between continental and ocean crust released

Earth’s topography and bathymetry with revised boundaries between continental and ocean crust overlain as thin red lines. We have released a refined data set of the boundaries between continental and ocean crust (COBs). The data can be downloaded from zenodo as GPlates-compatible gpmlz and as ESRI shapefile. The COBs are based on the data set … Read more…

A new explanation for the Neoproterozoic Snowball Earth episodes

Reposted from Earth Logs by Steve Drury The Cryogenian Period that lasted from 860 to 635 million years ago is aptly named, for it encompassed two maybe three episodes of glaciation. Each left a mark on every modern continent and extended from the poles to the Equator. In some way, this series of long, frigid … Read more…

What made Earth a giant snowball 700m years ago? Scientists have an answer

8 February 2024, University of Sydney Media release Historically low volcanic emissions and weathering events seem likely cause Dr Adriana Dutkiewicz was inspired during a field trip to the Flinders Ranges to find out how volcanic activity turned our blue dot to an ice covered planet. Together with Professor Dietmar Muller and the EarthByte group, … Read more…

Geology: Submarine volcanism along shallow ridges did not drive Cryogenian cap carbonate formation

The termination of Neoproterozoic “Snowball Earth” glaciations is marked globally by laterally extensive neritic cap carbonates directly overlying glacial diamictites. The formation of these unique deposits on deglaciation calls for anomalously high CaCO3 saturation. A popular mechanism to account for the source of requisite ocean alkalinity is the shallow-ridge hypothesis, in which initial spreading ridges … Read more…

Geology: Duration of Sturtian “Snowball Earth” glaciation linked to exceptionally low mid-ocean ridge outgassing

The Sturtian ‘Snowball Earth’ glaciation (~717–661 Ma) is regarded as the most extreme interval of icehouse climate in Earth’s history. The exact trigger and sustention mechanisms for this long-lived global glaciation remain obscure. The most widely debated causes are silicate weathering of the ~718 Ma Franklin LIP, and changes in the length and degassing of … Read more…

Tectonics: Differential Uplift Triggered Basin-And-Range System: Evidence From Low-Temperature Thermochronology in Eastern NE Asia

Since the Mesozoic, eastern NE Asia has experienced multiple tectonic events, resulting in a complex structure and forming one of the world’s largest Meso-Cenozoic lacustrine basin systems. Presently, basin evolution models require further elucidation regarding the simultaneous generation of diverse rift basins and the potential impact stemming from the closure of the Mudanjiang Ocean, whose … Read more…

GPlately1.3 released

GPlately

We end 2023 with the release of GPlately1.3, with a number of bugfixes and improvements. The cool functionality of GPlately includes generating gridded oceanic crustal ages and seafloor spreading rates from plate models with evolving plate boundaries – see example below using a plate model in a mantle reference frame. Happy holidays from the EarthByte … Read more…