Global subduction and back-arc basin grids and data

Please Note: These age grids are now outdated. Please see the agegrids available from the Müller et al. 2013 study on Ocean Chemistry at the Seawater chemistry driven by supercontinent assembly, break-up and dispersal resource page.

Subduction image 1Downloads
Download global subduction age grid images via FTP here – tgz file
Download global subduction parameter dataset via FTP here – tgz file
Read more…

Share

Ellipsis

Ellipsis Visual Editor screenshotEllipsis is a lagrangian particle-in-cell finite element modelling software tool with an associated graphical user interface (GUI). Ellipsis, along with its GUI and its associated documentation allow novice users to assemble 2D or 3D numerical experiment for lithospheric extension and/or compression over a convecting mantle or simply run a mantle convection experiment with or without continents in a relatively short time, including the scaling of relevant parameters.  … Read more…

Share

Generic Mapping Tools (GMT)

GMT is an open source collection of about 80 command-line tools for manipulating geographic and Cartesian data sets (including filtering, trend fitting, gridding, projecting, etc.) and producing PostScript illustrations ranging from simple x–y plots via contour maps to artificially illuminated surfaces and 3D perspective views; the GMT supplements add another 40 more specialized and discipline-specific … Read more…

Christian Heine awarded GSA Young Author’s Award

Congratulations to Christian Heine who has been awarded the GSA Young Authors’ Award for 2005 for his paper in the Australian Journal of Earth Sceince (Heine C & M¸ller R D 2005. Late Jurassic rifting along the Australian North West Shelf: margin geometry and spreading ridge configuration. 52, 27-39). Christian won the David I Groves Award … Read more…

Integrating global multidimensional datasets to underpin subduction process modelling during the past 60 million years

Project Report
Understanding the initiation and processes governing subduction remains one of the greatest challenges in geodynamics. Subduction processes affect every aspect of the Earth system, from its control on the thermal and chemical state of the mantle, to its recycling of oceanic lithosphere, sediments, water and volatiles, to its affect on the atmosphere, hydrosphere, biosphere and solid Earth through earthquakes and volcanic eruptions. Moreover, subduction is generally agreed to be one of the primary driving forces of plate tectonics and mantle convection through slab pull and the addition of raw materials into the mantle. … Read more…

Share

GPlates News

GPlates News Current Edition Issue 3 – March 2015 View Online newsletter GPlates News Past Editions Issue 2 – April 2014 View Online newsletter Issue 1 – October 2013 View Online newsletter Download PDF newsletter   Mailing Lists GPlates mailing lists GPlates-announce: A read-only list that you can subscribe to if you are only interested … Read more…

Constructing a tectonic framework for Ocean Drilling at high latitudes

Project Summary
Currently a major Ocean Drilling Program (ODP) campaign south of Australia is being carried out, comprising nine drilling legs. We propose to create a tectonic and paleogeographic framework for interpreting, modelling and synthesising these data. A joint analysis of Arctic and Antarctic regions will bring together a group of researchers from the Universities of Ottawa/Canada, California at San Diego/USA and Sydney to integrate data and models for the evolution of polar ocean basins and margins. The project will strengthen our ties with centres of excellence in polar geoscience and help to maximise the return for Australia’s investment in ODP.  … Read more…

Share

Seafloor spreading around Australia

(a) Abstract
The Australian Plate has undergone major changes in plate boundary geometry and relative plate velocities since the breakup of Gondwanaland. We illustrate the history of seafloor spreading around Australia by reconstructing gridded ocean floor ages and plate boundary configurations in a fixed Australian reference frame. In the Argo Abyssal Plain, seafloor spreading started at M25 dated as 154.3 Ma Late Jurassic (Oxfordian). The onset of seafloor spreading west of Australia at ~136 Ma marks the breakup between Greater India and Australia. Roughly at the same time, long-lived subduction east of Australia ceased, probably due to subduction of the Phoenix-Pacific spreading ridge, changing this plate boundary to a transform margin. … Read more…

Share

Numerical Modeling of Archean Tectonic Regimes by 2-Dimensional Finite Element Code

Project Summary
Many lines of evidence suggest that heat loss from the earth should have been significantly greater in the Archean. The presence of high temperature komatiites, greater radiogenic heat production and heat from the secular cooling of the earth all imply higher mantle temperatures in the Archean. However, these lines of evidence are difficult to reconcile with Archean metamorphic PT data, diamond thermobarometry, mantle xenoliths in kimberlites, the ominous lack of minimum melting granites and estimates for crustal thickness which all suggest that geothermal gradients in the Archean, at least on the continents, were not very different from today. This paradox presents problems for reconstructing Archean tectonic processes and environments.  … Read more…

Share

Seafloor imaging east and south of Australia

Project Summary
Data from three recent cruises on N.O. L’Atalante are used in collaboration with AGSO to use backscatter and bathymetry data for seafloor classification, and to reconstruct the tectonic and sedimentary history of selected areas, also based on 3.5 kHz, seismic reflection, gravity and magnetic data.

Sponsors
Australian Geological Survey Organization
Environment Australia  … Read more…

Share

The Mid-Cretaceous seafloor spreading pulse: fact or fiction?

Project Summary
A major debate in Geoscience is centred on the hypothesis that a massive pulse of rapid seafloor spreading occurred during the mid-Cretaceous (~120-80 Ma). It has been suggested that such a pulse caused prolonged magnetic field stability, large igneous provinces, a sea-level highstand, variations in atmospheric CO2 and anoxia, but doubts have been raised about its existence. We propose to test this hypothesis by creating complete palaeo-seafloor age grids for the last 130 m.y. They will serve as input for 3-D spherical convection models, whose output will be groundtruthed by plate kinematics, results from mantle tomography and by the uplift-subsidence history of cratons.  … Read more…

Share