Nature: Landscape dynamics and the Phanerozoic diversification of the biosphere

The long-term diversification of the biosphere responds to changes in the physical environment. Yet, over the continents, the nearly monotonic expansion of life started later in the early part of the Phanerozoic eon1 than the expansion in the marine realm, where instead the number of genera waxed and waned over time2. A comprehensive evaluation of … Read more…

EOS: Shifts in Tectonic Plates Change Biodiversity

For the past 250 million years, species have diversified and died out while Earth’s tectonic plate movements and sea level changes have operated in the background. They’re linked, according to new research that found that processes altering the lithosphere affect ocean levels and, in turn, the availability of shallow marine environments in which life thrives. “Why we … Read more…

GPlates finalist in Australian Museum Eureka Prize for Excellence in Research Software

GPlates has been shortlisted for one of the 18 Australian Museum Eureka Prizes in 2023 – the Australian Research Data Commons Eureka Prize for Excellence in Research Software thanks to over 15 years of support by the AuScope National Collaborative Research Infrastructure Strategy.  

Scientists discover 36-million-year geological cycle that drives biodiversity

11 July 2023 Tectonic changes alter sea levels that can create breeding grounds for life Movement in the Earth’s tectonic plates indirectly triggers bursts of biodiversity in 36-million-year cycles by forcing sea levels to rise and fall, new research has shown. Dinosaur Stampede exhibit at Dinosaur Canyon, located in Queensland’s Winton Formation which was formed … Read more…

Science: Hundred million years of landscape dynamics from catchment to global scale

Our capability to reconstruct past landscapes and the processes that shape them underpins our understanding of paleo-Earth. We take advantage of a global-scale landscape evolution model assimilating paleoelevation and paleoclimate reconstructions over the past 100 million years. This model provides continuous quantifications of metrics critical to the understanding of the Earth system, from global physiography … Read more…