Nature: Landscape dynamics and the Phanerozoic diversification of the biosphere

The long-term diversification of the biosphere responds to changes in the physical environment. Yet, over the continents, the nearly monotonic expansion of life started later in the early part of the Phanerozoic eon1 than the expansion in the marine realm, where instead the number of genera waxed and waned over time2. A comprehensive evaluation of … Read more…

Environmental controls on the resilience of Scott Reefs since the Miocene (North West Shelf, Australia): Insights from 3D seismic data

North and South Scott Reefs are isolated carbonate platforms separated by an inter-reef channel on the NWS, Australia. They evolved from a barrier reef in the Miocene, and into isolated carbonate build-ups (ICB’s) during the Pliocene, and finally to the isolated carbonate platforms that continued to present day. However, the timings of coral reef turn … Read more…

The role of surface processes in basin inversion and breakup unconformity

In the context of continental extension, transient compressional episodes (stress inversion) and phases of uplift (depth inversion) are commonly recorded with no corresponding change in plate motion. Changes in gravitational potential energy during the rifting process have been invoked as a possible source of compressional stresses, but their magnitude, timing, and relationship with depth inversions … Read more…

The Role of Isostasy in the Evolution and Architecture of Fold and Thrust Belts

Warmer conditions prevalent in the hinterland of orogenic systems facilitate local ductile flow underneath the surface load, making Airy-like local isostasy more prevalent in these domains. In contrast, flexural isostasy better describes the regional response to surface loading of more rigid lithospheres. Here, we explore how the interaction between horizontal tectonic mass transfer and vertical … Read more…

Scientific Reports: A geospatial platform for the tectonic interpretation of low‐temperature thermochronology Big Data

Low‐temperature thermochronology is a powerful tool for constraining the thermal evolution of rocks and minerals in relation to a breadth of tectonic, geodynamic, landscape evolution, and natural resource formation processes through deep time. However, complexities inherent to these analytical techniques can make interpreting the significance of results challenging, requiring them to be placed in their … Read more…

Scientific Reports: Kimberlite eruptions driven by slab flux and subduction angle

Kimberlites are sourced from thermochemical upwellings which can transport diamonds to the surface of the crust. The majority of kimberlites preserved at the Earth’s surface erupted between 250 and 50 million years ago, and have been attributed to changes in plate velocity or mantle plumes. However, these mechanisms fail to explain the presence of strong … Read more…

PNAS: Earth’s interior dynamics drive marine fossil diversity cycles of tens of millions of years

The fossil record reveals that biotic diversity has fluctuated quasi-cyclically through geological time. However, the causal mechanisms of biotic diversity cycles remain unexplained. Here, we highlight a common, correlatable 36 ± 1 Myr (million years) cycle in the diversity of marine genera as well as in tectonic, sea-level, and macrostratigraphic data over the past 250 … Read more…

Deep time spatio-temporal data analysis using pyGPlates with PlateTectonicTools and GPlately

Plate Models

PyGPlates is an open-source Python library to visualize and edit plate tectonic reconstructions created using GPlates. The Python API affords a greater level of flexibility than GPlates to interrogate plate reconstructions and integrate with other Python workflows. GPlately was created to accelerate spatio-temporal data analysis leveraging pyGPlates and PlateTectonicTools within a simplified Python interface. This … Read more…

Tectonics: Modeling Lithospheric Thickness Along the Conjugate South Atlantic Passive Margins Implies Asymmetric Rift Initiation

The lithospheric architecture of passive margins is crucial for understanding the tectonic processes that caused the breakup of Gondwana. We highlight the evolution of the South Atlantic passive margins by a simple thermal lithosphere-asthenosphere boundary (LAB) model based on onset and cessation of rifting, crustal thickness, and stretching factors. We simulate lithospheric thinning and select … Read more…

Evolution of Mantle Plumes and Lower Mantle Structure in Numerical Models Using Tectonic Reconstructions as Boundary Conditions

We evaluate four mantle convection models that use tectonic reconstructions to specify kinematic boundary conditions to explore the development of the lower mantle large low shear velocity provinces (LLSVP) structures and their relationship with mantle plumes. Evolution of mantle plumes in our spherical models is broadly consistent with observations including the number of plumes generated … Read more…

Science: Hundred million years of landscape dynamics from catchment to global scale

Our capability to reconstruct past landscapes and the processes that shape them underpins our understanding of paleo-Earth. We take advantage of a global-scale landscape evolution model assimilating paleoelevation and paleoclimate reconstructions over the past 100 million years. This model provides continuous quantifications of metrics critical to the understanding of the Earth system, from global physiography … Read more…

Nature Reviews Earth and Environment: Deconstructing plate tectonic reconstructions

The evolving mosaic of tectonic plates across the surface of the Earth sets boundary conditions for the evolution of biotic and abiotic processes and helps shape the dynamics of its interior. Reconstructing plate tectonics back through time allows scientists from a range of disciplines (such as palaeobiology, palaeoclimate, geodynamics and seismology) to investigate Earth evolution … Read more…