Geology: Duration of Sturtian “Snowball Earth” glaciation linked to exceptionally low mid-ocean ridge outgassing

The Sturtian ‘Snowball Earth’ glaciation (~717–661 Ma) is regarded as the most extreme interval of icehouse climate in Earth’s history. The exact trigger and sustention mechanisms for this long-lived global glaciation remain obscure. The most widely debated causes are silicate weathering of the ~718 Ma Franklin LIP, and changes in the length and degassing of … Read more…

Deep time spatio-temporal data analysis using pyGPlates with PlateTectonicTools and GPlately

Plate Models

PyGPlates is an open-source Python library to visualize and edit plate tectonic reconstructions created using GPlates. The Python API affords a greater level of flexibility than GPlates to interrogate plate reconstructions and integrate with other Python workflows. GPlately was created to accelerate spatio-temporal data analysis leveraging pyGPlates and PlateTectonicTools within a simplified Python interface. This … Read more…

GPlately1.0 released

GPlately

We have just released GPlately1.0 as a conda package. GPlately was created to accelerate spatio-temporal data analysis leveraging pyGPlates and PlateTectonicTools within a simplified Python interface. GPlately is a python package that enables the reconstruction of data through deep geologic time (points, lines, polygons and rasters), the interrogation of plate kinematic information (plate velocities, rates of subduction … Read more…

EOS: Billion-year rewind tracks supercontinents and mantle structures

AGU Science News: Billion-Year Rewind Tracks Supercontinents and Mantle Structures – EOS has featured our recent paper on tracing past pathways of tectonic plates and their boundaries back a billion years. The article highlights how our work on solid Earth system evolution is driving “a second plate tectonic revolution”., inspiring future work to test and … Read more…

Solid Earth: A tectonic-rules-based mantle reference frame since 1 billion years ago – implications for supercontinent cycles and plate–mantle system evolution

Understanding the long-term evolution of Earth’s plate-mantle system is reliant on absolute plate motion models in a mantle reference frame, but such models are both difficult to construct and controversial. We present a tectonic rules-based optimisation approach to construct a plate motion model in a mantle reference frame covering the last billion years and use … Read more…

Extending full-plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic

Recent progress in plate tectonic reconstructions has seen models move beyond the classical idea of continental drift by attempting to reconstruct the full evolving configuration of tectonic plates and plate boundaries. A particular problem for the Neoproterozoic and Cambrian is that many existing interpretations of geological and palaeomagnetic data have remained disconnected from younger, better-constrained … Read more…

EPSL: Long-term Phanerozoic sea level change from solid Earth processes

The sedimentary rock record suggests that global sea levels may have fluctuated by hundreds of meters throughout Phanerozoic times. Long-term (10–80 Myr) sea level change can be inferred from paleogeographic reconstructions and stratigraphic methods can be used to estimate sea level change over 1–10 Myr in tectonically quiescent regions assumed to be stable. Plate tectonic … Read more…