A global dataset of present-day oceanic crustal age and seafloor spreading parameters

Abstract: We present an updated oceanic crustal age grid and a set of complementary grids including spreading rate, asymmetry, direction and obliquity. Our dataset is based on a selected set of magnetic anomaly identifications and the plate tectonic model of Müller et al. (2019). We find the mean age of oceanic crust is 64.2 Myrs, … Read more…

Decoding earth’s plate tectonic history using sparse geochemical data

Abstract: Accurately mapping plate boundary types and locations through time is essential for understanding the evolution of the plate-mantle system and the exchange of material between the solid Earth and surface environments. However, the complexity of the Earth system and the cryptic nature of the geological record make it difficult to discriminate tectonic environments through … Read more…

Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic

Sabin Zahirovic, Kara J. Matthews, Nicolas Flament, R. Dietmar Müller, Kevin C. Hill, Maria Seton, Michael Gurnis Earth-Science Reviews Citation: Zahirovic, S., Matthews, K.J., Flament, N., Müller, R.D., Hill, K.C., Seton, M. and Gurnis, M., 2016, Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic, Earth Science Reviews, 162, 293-337. The … Read more…

The influence of carbonate platform interactions with subduction zone volcanism on palaeo-atmospheric CO2 since the Devonian

Abstract: The CO2 liberated along subduction zones through intrusive/extrusive magmatic activity and the resulting active and diffuse outgassing influences global atmospheric CO2. However, when melts derived from subduction zones intersect buried carbonate platforms, decarbonation reactions may cause the contribution to atmospheric CO2 to be far greater than segments of the active margin that lacks buried carbon-rich rocks and … Read more…

A global review and digital database of large-scale extinct spreading centers

Author List: Sarah MacLeod, Simon Williams, Kara Matthews, Dietmar Müller and Xiaodong Qin Citation: MacLeod, S.J., Williams, S.E., Matthews, K.J., Müller, R.D. and Qin, X., 2017. A global review and digital database of large-scale extinct spreading centers. Geosphere, pp.GES01379-1. Abstract: Extinct mid-ocean ridges record past plate boundary reorganizations, and identifying their locations is crucial to developing a better understanding of the … Read more…

Global plate boundary evolution and kinematics since the late Paleozoic

Matthews++_SummaryFigCitation

Matthews, K.J., Maloney, K.T., Zahirovic, S., Williams, S.E., Seton, M., and Müller, R.D. (2016). Global plate boundary evolution and kinematics since the late Paleozoic, Global and Planetary Change, 146, 226-250. DOI: 10.1016/j.gloplacha.2016.10.002

Abstract

Many aspects of deep-time Earth System models, including mantle convection, paleoclimatology, paleobiogeography and the deep Earth carbon cycle, require high-resolution plate models that include the evolution of the mosaic of plate boundaries through time. We present the first continuous late Paleozoic to present-day global plate model with evolving plate boundaries, building on and extending two previously published models for the late Paleozoic (410–250 Ma) and Mesozoic-Cenozoic (230–0 Ma). We ensure continuity during the 250–230 Ma transition period between the two models, update the absolute reference frame of the Mesozoic-Cenozoic model and add a new Paleozoic reconstruction for the Baltica-derived Alexander Terrane, now accreted to western North America. This 410–0 Ma open access model provides a framework for deep-time whole Earth modelling and acts as a base for future extensions and refinement.

This model is available with a default mantle reference frame, a hybrid reference frame using moving hotspots and a true polar wander corrected paleomagnetic reference frame (see paper for details) as well as with a paleomagnetic reference frame. For times before 83 Ma, the Pacific is shifted to maintain relative motions with the circum-Pangea continents – largely due to the fact that no paleomagnetic reference frames exist that extend to the birth age of the Pacific Plate. The paleomagnetic reference frame is based on data from Torsvik, T. H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V., van Hinsbergen, D. J., Domeier, M., Gaina, C., and Tohver, E., 2012, Phanerozoic polar wander, palaeogeography and dynamics: Earth-Science Reviews, v. 114, no. 3, p. 325-368, DOI: 10.1016/j.earscirev.2012.06.007.

Read more…

Share

Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea Breakup

Author List: Dietmar Müller, Maria Seton, Sabin Zahirovic, Simon Williams, Kara Matthews, Nicky Wright, Grace Shephard, Kayla Maloney, Nicholas Barnett-Moore, Maral Hosseinpour, Dan Bower and John Cannon. Citation: Müller, R.D., Seton, M., Zahirovic, S., Williams, S.E., Matthews, K.J., Wright, N.M., Shephard, G.E., Maloney, K.T., Barnett-Moore, N., Hosseinpour, M., Bower, D.J., & Cannon, J. (2016). Ocean Basin Evolution and … Read more…

Geologists Discover How Australia’s Highest Mountain Formed

Eastern_australia_topographyCongratulations to Prof Dietmar Müller, Dr Nicolas Flament, Dr Kara Matthews, Dr Simon Williams, and Prof Michael Gurnis on their paper recently published in Earth and Planetary Science Letters. Their paper, Formation of Australian continental margin highlands driven by plate-mantle interaction, has featured in a variety of Australian and international media outlets.

Read more…

Share

Geologists Discover How Australia’s Highest Mountain Formed – Media Release

Eastern_australia_topographyGeologists from the University of Sydney and the California Institute of Technology have solved the mystery of how Australia’s highest mountain – Mount Kosciusko – and surrounding alps came to exist.

Most of the world’s mountain belts are the result of two continents colliding (including the Himalayas) or volcanism. The mountains of Australia’s Eastern highlands – stretching from north-eastern Queensland to western Victoria – are an exception. Until now no one knew how they formed.

Read more…

Share

Earth and Planetary Science Letters – Formation of Australian continental margin highlands driven by plate–mantle interaction

Author List: Dietmar Müller, Nicolas Flament, Kara Matthews, Simon Williams and Mike Gurnis Citation: Müller, R. D., Flament, N., Matthews, K. J., Williams, S. E., & Gurnis, M. (2016). Formation of Australian continental margin highlands driven by plate–mantle interaction. Earth and Planetary Science Letters, 441, 60–70. http://dx.doi.org/10.1016/j.epsl.2016.02.025 Formation of Australian continental margin highlands driven by plate–mantle … Read more…

EarthByte/Scripps research features on NASA Earth Observatory

Triplejunction gis 2014 (Copyright NASA Earth Observatory)

NASA Earth Observatory features a piece on the recent Mammerickx Microplate discovery. Their Image of the Day for 13 January 2016 is a satellite gravity map of the Indian Ocean, and the associated article, entitled ‘New Seafloor Map Helps Scientists Find New Features‘, discusses the power of satellite data for seafloor mapping and details the … Read more…

Earth and Planetary Science Letters – Oceanic microplate formation records the onset of India–Eurasia collision

Mammerickx Microplate zoom

Author List: Kara Matthews, Dietmar Müller and David Sandwell Citation: Matthews, K. J., Müller, R. D., & Sandwell, D. T. (2016). Oceanic microplate formation records the onset of India–Eurasia collision. Earth and Planetary Science Letters, 433, 204-214. Oceanic microplate formation records the onset of India–Eurasia collision

History and current advances in reconstructing the Earth through deep geological time

Rodinia 1000 Ma

Rodinia 1000 MaTime machine: History and current advances in reconstructing the Earth through deep geological time – an article on Quartz by Steve LeVine. The article is a review of the development of ideas and technologies in reconstructing the Earth through deep time, aimed at understanding supercontinent assembly, breakup and dispersal, starting with Alfred Wegener. The article focusses on research activities in the context of the IGCP 648 project ‘Supercontinent Cycles and Global Geodynamics‘ led by Zheng-Xiang Li. The piece provides some historical context, and highlights the work of a number of leading scientists, postdoctoral researchers and PhD students currently involved in this work.  … Read more…

Share

Mammerickx Microplate media coverage

Mammerickx Microplate zoom

Mammerickx Microplate zoomThe recent EPSL article on the discovery of the Mammerickx Microplate, by Dr Kara Matthews, Prof Dietmar Müller and Prof David Sandwell, has received lots of media attention from many different countries around the world including Australia, UK, USA, India, Pakistan, Mexico, Nepal and Honduras.

See below for a list of media items:

Online Media
The biggest continental collision in Earth’s history: Scientists pinpoint crashing together of continents that created the Himalayas 50 million years ago – Daily Mail
Scientists fix date for earth-shattering Himalayan birth pangs – The Sydney Morning Herald
Microplate discovery dates birth of Himalayas – EurekAlert!
Himalayas: Discovery of first ancient Indian Ocean microplate hints at new date of formation of mountain range – Yahoo! News  … Read more…

Share

Ancient Indian Ocean microplate discovery dates birth of Himalayas

Mammerickx Microplate

Mammerickx MicroplateAn international team of scientists led by the University of Sydney’s School of Geosciences has discovered that the crustal stresses caused by the initial collision between India and Eurasia cracked the Antarctic Plate far away from the collisional zone and broke off a fragment the size of Tasmania in a remote patch of the central Indian Ocean.

The ongoing tectonic collision between the two continents produces enormous geological stresses that build up along the Himalayas and lead to numerous earthquakes every year – but now scientists have unravelled how stressed the Indian Plate became 47 million years ago when its northern edge first collided with Eurasia. … Read more…

Share

Ocean basin evolution and global-scale plate reorganization events since Pangea breakup

Seafloor ages from Müller et al.

Seafloor ages from Müller et al.Citation
Müller R.D., Seton, M., Zahirovic, S., Williams, S.E., Matthews, K.J., Wright, N.M., Shephard, G.E., Maloney, K.T., Barnett-Moore, N., Hosseinpour, M., Bower, D.J., Cannon, J., 2016. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup, Annual Review of Earth and Planetary Sciences, Vol 44, 107-138. DOI: 10.1146/annurev-earth-060115-012211.

Abstract
We present a revised global plate motion model with continuously closing plate boundaries ranging from the Triassic at 230 Ma to the present day, assess differences between alternative absolute plate motion models, and review global tectonic events. Relatively high mean absolute plate motion rates around 9–10 cm yr-1 between 140 and 120 Ma may be related to transient plate motion accelerations driven by the successive emplacement of a sequence of large igneous provinces during that time. … Read more…

Share

Deep Carbon Observatory (DCO) proposal funded

Global plate reconstruction

A Deep Carbon Observatory (DCO) Proposal, designed to study the interaction of subduction zones with carbonate platforms through time in terms of CO2 cycles, submitted to the Smithsonian Institution and prepared to a large extent by Dr Sabin Zahirovic and EarthByte Research Assistant Jodie Pall, was successful, raising $US36k. The DCO actually doubled our proposed budget from … Read more…

EarthByte has a new website!

Australia vgg NW view

Today we officially launch the new EarthByte website! The new site has dedicated ‘Global Plate Models’ and ‘GPlates’ pages (Resources) for quick and easy access to our published GPlates-compatible kinematic models, search bar functionality, a responsive layout that is compatible with handheld devices, detailed people pages, an ‘Outreach’ space, and news, awards, media and research … Read more…

Geochemistry, Geophysics, Geosystems – Semi-automatic fracture zone tracking

Wessel, P., Matthews, K. J., Müller, R. D., Mazzoni, A., Whittaker, J. M., Myhill, R., & Chandler, M. T. (2015). Semi-automatic fracture zone tracking. Geochemistry, Geophysics, Geosystems. doi: 10.1002/2015GC005853. Semi-automatic fracture zone tracking This paper includes an update to the global seafloor tectonic fabric data set by Matthews et al. (JGR, 2011).  Based on the vertical gravity … Read more…

Dietmar Müller attends Australian open research data showcase in Canberra

ANDS Showcase June 2015Today Prof Dietmar Müller attended the Australian open research data showcase in Canberra. The showcase featured a variety of talks and discussions around the benefits and issues concerning open research data. It was an important milestone towards consolidating the Australian effort towards involving Universities and individual researchers in sharing their data.

A highlight was Ian Chubb’s presentation that pointed out that if you look at all papers published in the last 115 years, about 50% were either never cited or only cited once. The hope is that open access publications and associated open research data will improve these sorts of statistics. George Bernard Shaw was quoted by geologist Geoffrey Boulton (Univ. Edinburgh) as pointing out: “If you have an apple and I have an apple and we exchange these apples then you and I will still each have one apple. … Read more…

Share

ANDS-MODC

ANDS logoEarthByte, in collaboration with The University of Sydney Library and ICT department, is involved in an important ANDS-MODC funded project to ensure that EarthByte data collections are supported by a robust data management regime. This is to enhance the sustainability, discoverability and re-use of these resources.  … Read more…

Share

Earth-Science Reviews – Geological and kinematic constraints on late Cretaceous to mid Eocene plate boundaries in the Southwest Pacific

Matthews, K. J., Williams, S. E., Whittaker, J. M., Müller, R. D., Seton, M., & Clarke, G. L. (2015). Geologic and kinematic constraints on Late Cretaceous to mid Eocene plate boundaries in the southwest Pacific. Earth-Science Reviews, 140, 72-107. doi: 10.1016/j.earscirev.2014.10.008. Geologic and kinematic constraints on Late Cretaceous to mid Eocene plate boundaries in the southwest … Read more…

EarthByte welcomes Professor Sanzhong Li and PhD student Shan Yu

EarthByte would like to welcome Professor Sanzhong Li who is visiting for 2 months from the Ocean University of China. We also welcome Shan Yu, a PhD student at the Ocean University of China who will study at EarthByte for 1 year. She will be developing plate reconstructions of the Paleotethys in central China and … Read more…

Understanding the deep driving forces of Earth’s large-scale topography through time

Global paleogeography figureProject Summary
Continents and sedimentary basins through time record fundamental Earth system cycles, reflecting environmental change, migration of fauna and flora and shifting coastlines. It was originally thought that successive advances and retreats of shallow inland seas mainly reflect global sea level variations (eustasy). It is now well known in principle that large-scale surface morphology such as the high topography of the East African Rift, the low-lying Amazon River Basin and the southwest to northeast tilt of the Australian continent are strongly controlled by processes deep within the Earth, but progress has been slow in quantifying the magnitude and time-dependence of these relationships. … Read more…

Share

Talented Student Program 2013

TSP Showcase 2013 Mod Group PhotoSemester 1 2013, University of Sydney – Australia

Theme: The magic and utility of the invisible world

Geo-theme: Windows into the deep Earth

In semester 1 2013 the EarthByte Group hosted a team of students from the Talented Student Program (TSP), targeted at the top performing first year students in the Faculty of Science at the University of Sydney. The students investigated windows into the deep Earth, that is, they unravelled the effect of ridge subduction events on mantle structure. … Read more…

Share

Eastern Australasian Basins Symposium IV – Late Cretaceous to present-day opening of the southwest Pacific constrained by numerical models and seismic tomography

Matthews, K. J., Seton, M., Flament, N., & Müller, R. D. (2012). Late Cretaceous to present-day opening of the southwest Pacific constrained by numerical models and seismic tomography. In Eastern Australasian Basins Symposium EABS IV: Exploration—Driving Future Energy Solutions, Petroleum Exploration Society of Australia (pp. 105-119). Download the paper – pdf